Design Principles for a Family of Direct-Drive Legged Robots

This letter introduces Minitaur, a dynamically running and leaping quadruped, which represents a novel class of direct-drive (DD) legged robots. We present a methodology that achieves the well-known benefits of DD robot design (transparency, mechanical robustness/efficiency, high-actuation bandwidth, and increased specific power), affording highly energetic behaviors across our family of machines despite severe limitations in specific force. We quantify DD drivetrain benefits using a variety of metrics, compare our machines' performance to previously reported legged platforms, and speculate on the potential broad-reaching value of “transparency” for legged locomotion.

[1]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[2]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[5]  H. Harry Asada,et al.  Direct-Drive Robots: Theory and Practice , 1987 .

[6]  Daniel E. Koditschek Some Applications of Natural Motion Control , 1991 .

[7]  Martin Buehler,et al.  Design, modeling and control of a hopping robot , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[8]  Dale A. Lawrence Stability and transparency in bilateral teleoperation , 1993, IEEE Trans. Robotics Autom..

[9]  Richard S. Wallace Miniature direct drive rotary actuators II: Eye, finger and leg , 1994, Robotics Auton. Syst..

[10]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[11]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[12]  A. Ruina,et al.  A New Algebraic Rigid-Body Collision Law Based on Impulse Space Considerations , 1998 .

[13]  Martin Buehler,et al.  The ARL monopod II running robot: control and energetics , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Dennis A. Randolph,et al.  What Price Speed , 2000 .

[15]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Alin Albu-Schäffer,et al.  The DLR lightweight robot: design and control concepts for robots in human environments , 2007, Ind. Robot.

[17]  Jonathan W. Hurst,et al.  The role and implementation of compliance in legged locomotion , 2008 .

[18]  Chris H. Mullens,et al.  Insects running on elastic surfaces , 2010, Journal of Experimental Biology.

[19]  Daniel E. Koditschek,et al.  Disturbance detection, identification, and recovery by gait transition in legged robots , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Kevin C. Galloway,et al.  X-RHex: A Highly Mobile Hexapedal Robot for Sensorimotor Tasks , 2010 .

[21]  R. Siegwart,et al.  Reinforcement Learning of Robotic Legged Locomotion , 2011 .

[22]  Roland Siegwart,et al.  Starleth: A compliant quadrupedal robot for fast, efficient, and versatile locomotion , 2012 .

[23]  Jonathan W. Hurst,et al.  THE DESIGN OF ATRIAS 1.0 A UNIQUE MONOPOD, HOPPING ROBOT ∗ , 2012 .

[24]  Albert Wang,et al.  Actuator design for high force proprioceptive control in fast legged locomotion , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Albert Wang,et al.  Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[26]  R. Siegwart,et al.  Efficient and Versatile Locomotion With Highly Compliant Legs , 2013, IEEE/ASME Transactions on Mechatronics.

[27]  Auke Jan Ijspeert,et al.  Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot , 2013, Int. J. Robotics Res..

[28]  Daniel E. Koditschek,et al.  Legged Self-Manipulation , 2013, IEEE Access.

[29]  Mark Yim,et al.  Cogging Torque Ripple Minimization via Position Based Characterization , 2014, Robotics: Science and Systems.

[30]  Daniel E. Koditschek,et al.  Towards a Comparative Measure of Legged Agility , 2014, ISER.

[31]  Byeonghun Na,et al.  Design of a Direct-Driven Linear Actuator for a High-Speed Quadruped Robot, Cheetaroid-I , 2015, IEEE/ASME Transactions on Mechatronics.

[32]  R. Siegwart,et al.  An Optimization Approach to Controlling Jump Maneuvers for a Quadrupedal Robot , 2015 .

[33]  Daniel E. Koditschek,et al.  Tail-assisted rigid and compliant legged leaping , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Daniel E. Koditschek,et al.  The Penn Jerboa: A Platform for Exploring Parallel Composition of Templates , 2015, ArXiv.

[35]  Daniel E. Koditschek,et al.  Leg design for energy management in an electromechanical robot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[36]  Albert Wang,et al.  Directional efficiency in geared transmissions: Characterization of backdrivability towards improved proprioceptive control , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Daniel E. Koditschek,et al.  Parallel composition of templates for tail-energized planar hopping , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[38]  Mark Yim,et al.  Anticogging: Torque ripple suppression, modeling, and parameter selection , 2016, Int. J. Robotics Res..