Hybridization Reveals the Evolving Genomic Architecture of Speciation

SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites.

[1]  Patricio A. Salazar,et al.  Disruptive ecological selection on a mating cue , 2012, Proceedings of the Royal Society B: Biological Sciences.

[2]  M. Kronforst,et al.  MATE PREFERENCE ACROSS THE SPECIATION CONTINUUM IN A CLADE OF MIMETIC BUTTERFLIES , 2011, Evolution; international journal of organic evolution.

[3]  Michael S. Taylor,et al.  Widespread genomic divergence during sympatric speciation , 2010, Proceedings of the National Academy of Sciences.

[4]  D. Halligan,et al.  Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. , 2006, Genome research.

[5]  J. Mallet,et al.  Natural hybridization in heliconiine butterflies: the species boundary as a continuum , 2007, BMC Evolutionary Biology.

[6]  R. Nielsen,et al.  Distinguishing migration from isolation: a Markov chain Monte Carlo approach. , 2001, Genetics.

[7]  J. Mallet,et al.  Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies , 1995 .

[8]  Aaron A. Comeault,et al.  Genomic consequences of multiple speciation processes in a stick insect , 2012, Proceedings of the Royal Society B: Biological Sciences.

[9]  J. Mallet Hybridization as an invasion of the genome. , 2005, Trends in ecology & evolution.

[10]  James Mallet,et al.  Reproductive isolation caused by colour pattern mimicry , 2001, Nature.

[11]  Durrell D. Kapan,et al.  Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[13]  N. Barton,et al.  Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in heliconius hybrid zones. , 1990, Genetics.

[14]  E. Bermingham,et al.  Genetic Evidence for Hybrid Trait Speciation in Heliconius Butterflies , 2010, PLoS genetics.

[15]  M. Kronforst,et al.  MULTILOCUS ANALYSES OF ADMIXTURE AND INTROGRESSION AMONG HYBRIDIZING HELICONIUS BUTTERFLIES , 2006, Evolution; international journal of organic evolution.

[16]  H. Nijhout,et al.  optix Drives the Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry , 2011, Science.

[17]  C. Jiggins,et al.  Patterns of pollen feeding and habitat preference among Heliconius species , 2002 .

[18]  B. Browning,et al.  Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. , 2007, American journal of human genetics.

[19]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[20]  D. Absher,et al.  A role for a neo-sex chromosome in stickleback speciation , 2009, Nature.

[21]  Pall I. Olason,et al.  The genomic landscape of species divergence in Ficedula flycatchers , 2012, Nature.

[22]  Camilo Salazar,et al.  Genome‐wide patterns of divergence and gene flow across a butterfly radiation , 2013, Molecular ecology.

[23]  James Mallet,et al.  A Conserved Supergene Locus Controls Colour Pattern Diversity in Heliconius Butterflies , 2006, PLoS biology.

[24]  David Reich,et al.  Testing for ancient admixture between closely related populations. , 2011, Molecular biology and evolution.

[25]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[26]  O. Seehausen Hybridization and adaptive radiation. , 2004, Trends in ecology & evolution.

[27]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[28]  Simon H. Martin,et al.  Genome-wide evidence for speciation with gene flow in Heliconius butterflies , 2013, Genome research.

[29]  Durrell D. Kapan,et al.  Three-butterfly system provides a field test of müllerian mimicry , 2001, Nature.

[30]  P. Nosil,et al.  The genomics of speciation-with-gene-flow. , 2012, Trends in genetics : TIG.

[31]  R. Wilson,et al.  BreakDancer: An algorithm for high resolution mapping of genomic structural variation , 2009, Nature Methods.

[32]  Chris D. Jiggins,et al.  Speciation by hybridization in Heliconius butterflies , 2006, Nature.

[33]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[34]  C. Jiggins,et al.  Hybrid trait speciation and Heliconius butterflies , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  J. Mallet,et al.  Mimicry and warning colour at the boundary between races and species , 1998 .

[36]  N. Barton,et al.  STRONG NATURAL SELECTION IN A WARNING‐COLOR HYBRID ZONE , 1989, Evolution; international journal of organic evolution.

[37]  P. Nosil,et al.  THE EFFICACY OF DIVERGENCE HITCHHIKING IN GENERATING GENOMIC ISLANDS DURING ECOLOGICAL SPECIATION , 2010, Evolution; international journal of organic evolution.

[38]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[39]  Patrik Nosil,et al.  GENETIC HITCHHIKING AND THE DYNAMIC BUILDUP OF GENOMIC DIVERGENCE DURING SPECIATION WITH GENE FLOW , 2013, Evolution; international journal of organic evolution.

[40]  Durrell D. Kapan,et al.  Parallel Genetic Architecture of Parallel Adaptive Radiations in Mimetic Heliconius Butterflies , 2006, Genetics.

[41]  B. Charlesworth,et al.  Intron Size and Exon Evolution in Drosophila , 2005, Genetics.

[42]  M. Kronforst Gene flow persists millions of years after speciation in Heliconius butterflies , 2008, BMC Evolutionary Biology.

[43]  J. Mallet,et al.  Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  J. Mallet,et al.  Hybrid sterility, Haldane's rule and speciation in Heliconius cydno and H. melpomene. , 2002, Genetics.

[45]  Andrew Rambaut,et al.  Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..

[46]  S. Yeaman,et al.  Establishment of new mutations under divergence and genome hitchhiking , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  D. J. Funk,et al.  Divergent selection and heterogeneous genomic divergence , 2009, Molecular ecology.

[48]  W. W. Benson RESOURCE PARTITIONING IN PASSION VINE BUTTERFLIES , 1978, Evolution; international journal of organic evolution.

[49]  J. Coyne,et al.  A Test of the Snowball Theory for the Rate of Evolution of Hybrid Incompatibilities , 2010, Science.

[50]  M. Kronforst,et al.  Reinforcement of mate preference among hybridizing Heliconius butterflies , 2007, Journal of evolutionary biology.

[51]  J. Parsch Selective constraints on intron evolution in Drosophila. , 2003, Genetics.

[52]  C. Jiggins,et al.  Adaptive Introgression across Species Boundaries in Heliconius Butterflies , 2012, PLoS genetics.

[53]  G. A. Horridge,et al.  Animal species and evolution. , 1964 .

[54]  J. Hey Isolation with migration models for more than two populations. , 2010, Molecular biology and evolution.

[55]  K. S. Brown THE BIOLOGY OF HELICONIUS AND RELATED GENERA , 1981 .

[56]  Simon H. Martin,et al.  Butterfly genome reveals promiscuous exchange of mimicry adaptations among species , 2012, Nature.

[57]  F. C. Kafatos,et al.  Widespread Divergence Between Incipient Anopheles gambiae Species Revealed by Whole Genome Sequences , 2010, Science.

[58]  Brian Charlesworth,et al.  Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content , 2005, Genome Biology.

[59]  R. I. Hill,et al.  Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand , 2012, Proceedings of the National Academy of Sciences.

[60]  Richard R. Hudson,et al.  Generating samples under a Wright-Fisher neutral model of genetic variation , 2002, Bioinform..

[61]  Chad Huff,et al.  Linkage Disequilibrium Between Loci With Unknown Phase , 2009, Genetics.

[62]  H. Rundle,et al.  Speciation in nature : the threespine stickleback model systems , 2002 .

[63]  James Mallet,et al.  Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[64]  Rob J. Kulathinal,et al.  The Genomics of Speciation in Drosophila: Diversity, Divergence, and Introgression Estimated Using Low-Coverage Genome Sequencing , 2009, PLoS genetics.

[65]  M. Kronforst,et al.  Do Heliconius butterfly species exchange mimicry alleles? , 2013, Biology Letters.

[66]  Philipp W. Messer,et al.  Genome Patterns of Selection and Introgression of Haplotypes in Natural Populations of the House Mouse (Mus musculus) , 2012, PLoS genetics.

[67]  R. I. Hill,et al.  Polymorphic Butterfly Reveals the Missing Link in Ecological Speciation , 2009, Science.

[68]  S. Via Natural selection in action during speciation , 2009, Proceedings of the National Academy of Sciences.

[69]  Matthew W. Hahn,et al.  Genomic Islands of Speciation in Anopheles gambiae , 2005, PLoS biology.

[70]  A. Hendry,et al.  Along the speciation continuum in sticklebacks. , 2009, Journal of fish biology.

[71]  M. Kronforst,et al.  No genomic mosaicism in a putative hybrid butterfly species , 2007, Proceedings of the Royal Society B: Biological Sciences.

[72]  P. Nosil,et al.  THE EFFICACY OF DIVERGENCE HITCHHIKING IN GENERATING GENOMIC ISLANDS DURING ECOLOGICAL SPECIATION , 2010 .

[73]  James Mallet,et al.  Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in the Heliconius melpomene Clade , 2010, PLoS genetics.

[74]  J. Mallet,et al.  Phylogenetic discordance at the species boundary: comparative gene genealogies among rapidly radiating Heliconius butterflies. , 2002, Molecular biology and evolution.

[75]  M. Kronforst,et al.  The population genetics of mimetic diversity in Heliconius butterflies , 2008, Proceedings of the Royal Society B: Biological Sciences.

[76]  K. S. Brown,et al.  Genetics and the Evolution of Muellerian Mimicry in Heliconius Butterflies , 1985 .

[77]  L. Moyle,et al.  Hybrid Incompatibility “Snowballs” Between Solanum Species , 2010, Science.

[78]  J. Smiley Plant Chemistry and the Evolution of Host Specificity: New Evidence from Heliconius and Passiflora , 1978, Science.

[79]  R. I. Hill,et al.  Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species , 2011, Heredity.

[80]  F. C. Kafatos,et al.  SNP Genotyping Defines Complex Gene-Flow Boundaries Among African Malaria Vector Mosquitoes , 2010, Science.

[81]  R. D. Reed,et al.  Genomic hotspots of adaptation in butterfly wing pattern evolution. , 2008, Current opinion in genetics & development.

[82]  P. Nosil,et al.  Do highly divergent loci reside in genomic regions affecting reproductive isolation? A test using next-generation sequence data in Timema stick insects , 2012, BMC Evolutionary Biology.

[83]  J. Nunemacher,et al.  Optimal management of giant cell arteritis and polymyalgia rheumatica , 2012, Therapeutics and clinical risk management.

[84]  A. Papanicolaou,et al.  Heliconius wing patterns: an evo-devo model for understanding phenotypic diversity , 2006, Heredity.

[85]  J. Mallet,et al.  Polyphyly and gene flow between non-sibling Heliconius species , 2006, BMC Biology.

[86]  August E. Woerner,et al.  Recombination-filtered genomic datasets by information maximization , 2007, Bioinform..

[87]  Martin Goodson,et al.  Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. , 2011, Genome research.

[88]  J. Mallet,et al.  Genetic analysis of a wild-caught hybrid between non-sister Heliconius butterfly species , 2007, Biology Letters.