μ-Statistically Convergent Function Sequences

In the present paper we are concerned with convergence in μ-density and μ-statistical convergence of sequences of functions defined on a subset D of real numbers, where μ is a finitely additive measure. Particularly, we introduce the concepts of μ-statistical uniform convergence and μ-statistical pointwise convergence, and observe that μ-statistical uniform convergence inherits the basic properties of uniform convergence.

[1]  I. J. Maddox Statistical convergence in a locally convex space , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  J. A. Fridy,et al.  Lacunary Statistical Summability , 1993 .

[3]  J. A. Fridy,et al.  ON STATISTICAL CONVERGENCE , 1985 .

[4]  Tibor Šalát,et al.  On statistically convergent sequences of real numbers , 1980 .

[5]  Vladimir Kadets,et al.  A characterization of Banach spaces with separable duals via weak statistical convergence , 2000 .

[6]  Jeff Connor,et al.  Strong integral summability and the Stone-Čech compactification of the half-line , 1993 .

[7]  Jeff Connor,et al.  Two valued measures and summability , 1990 .

[8]  J. S. Connor,et al.  THE STATISTICAL AND STRONG p-CESARO CONVERGENCE OF SEQUENCES , 1988 .

[9]  Jeff Connor,et al.  A topological and functional analytic approach to statistical convergence , 1999 .

[10]  K. Demirci,et al.  Bounded Multipliers of Bounded A-Statistically Convergent Sequences , 1999 .

[11]  H. I. Miller,et al.  A measure theoretical subsequence characterization of statistical convergence , 1995 .

[12]  M. K. Khan,et al.  Tauberian theorems via statistical convergence , 1998 .

[13]  H. Fast,et al.  Sur la convergence statistique , 1951 .

[14]  Jeff Connor,et al.  On Statistical Limit Points and the Consistency of Statistical Convergence , 1996 .

[15]  J. Connor $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence , 1992 .

[16]  J. A. Fridy,et al.  Lacunary statistical convergence. , 1993 .

[17]  Robert Bartle,et al.  The Elements of Real Analysis , 1977, The Mathematical Gazette.

[18]  Sze-Tsen Hu,et al.  Elements of Real Analysis , 1967 .