Experimental and analytical program to determine strains in 737 LAP splice joints subjected to normal fuselage pressurization loads

The Federal Aviation Administration Technical Center (FAATC) has initiated several research projects to assess the structural integrity of the aging commercial aircraft fleet. One area of research involves the understanding of a phenomenon known as ``Widespread Fatigue Damage`` or WFD, which refers to a type of multiple element cracking that degrades the damage tolerance capability of an aircraft structure. Research on WFD has been performed both experimentally and analytically including finite element modeling of fuselage lap splice joints by the Volpe Center. Fuselage pressurization tests have also been conducted at the FAA`s Airworthiness Assurance NDI Validation Center (AANC) to obtain strain gage data from select locations on the FAA/AANC 737 Transport Aircraft Test Bed. One-hundred strain channels were used to monitor five different lap splice bays including the fuselage skin and substructure elements. These test results have been used to evaluate the accuracy of the analytical models and to support general aircraft analysis efforts. This paper documents the strain fields measured during the AANC tests and successfully correlates the results with analytical predictions.