Peeling the flow: a sketch-based interface to generate stream surfaces

We present a user-centric approach for stream surface generation. Given a set of densely traced streamlines over the flow field, we design a sketch-based interface that allows users to draw simple strokes directly on top of the streamline visualization result. Based on the 2D stroke, we identify a 3D seeding curve and generate a stream surface that captures the flow pattern of streamlines at the outermost layer. Then, we remove the streamlines whose patterns are covered by the stream surface. Repeating this process, users can peel the flow by replacing the streamlines with customized surfaces layer by layer. Our sketch-based interface leverages an intuitive painting metaphor which most users are familiar with. We present results using multiple data sets to show the effectiveness of our approach, and discuss the limitations and future directions.

[1]  Robert S. Laramee,et al.  Advanced, Automatic Stream Surface Seeding and Filtering , 2012, TPCG.

[2]  Kwan-Liu Ma,et al.  A sketch-based interface for classifying and visualizing vector fields , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[3]  Tobias Isenberg,et al.  A Design Study of Direct‐Touch Interaction for Exploratory 3D Scientific Visualization , 2012, Comput. Graph. Forum.

[4]  Hans Hagen,et al.  A tetrahedra-based stream surface algorithm , 2001, Proceedings Visualization, 2001. VIS '01..

[5]  Xiaoru Yuan,et al.  WYSIWYG (What You See is What You Get) Volume Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Thomas Ertl,et al.  Point-based stream surfaces and path surfaces , 2007, GI '07.

[7]  J. V. van Wijk,et al.  Implicit stream surfaces , 1993, Proceedings Visualization '93.

[8]  Hans Hagen,et al.  IRIS: Illustrative Rendering for Integral Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[9]  Daniel F. Keefe,et al.  Drawing with the Flow: A Sketch-Based Interface for Illustrative Visualization of 2D Vector Fields , 2010, SBIM.

[10]  Silvia Born,et al.  Illustrative Stream Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[11]  Christian Rössl,et al.  Global Selection of Stream Surfaces , 2013, Comput. Graph. Forum.

[12]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[13]  Christian Rössl,et al.  Sets of Globally Optimal Stream Surfaces for Flow Visualization , 2014, Comput. Graph. Forum.

[14]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[15]  Robert S. Laramee,et al.  Automatic Stream Surface Seeding: A Feature Centered Approach , 2012, Comput. Graph. Forum.

[16]  Xavier Tricoche,et al.  Surface techniques for vortex visualization , 2004, VISSYM'04.

[17]  Kenneth I. Joy,et al.  Generation of Accurate Integral Surfaces in Time-Dependent Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[18]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[19]  Kwan-Liu Ma,et al.  A novel interface for higher-dimensional classification of volume data , 2003, IEEE Visualization, 2003. VIS 2003..

[20]  Yun Jang,et al.  Smart Transparency for Illustrative Visualization of Complex Flow Surfaces , 2013, IEEE Transactions on Visualization and Computer Graphics.

[21]  Andrea Brambilla,et al.  Expressive seeding of multiple stream surfaces for interactive flow exploration , 2015, Comput. Graph..

[22]  Etienne Parkinson,et al.  Vorticity based flow analysis and visualization for Pelton turbine design optimization , 2004, IEEE Visualization 2004.

[23]  Daniel F. Keefe,et al.  Visualization-by-Sketching: An Artist's Interface for Creating Multivariate Time-Varying Data Visualizations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[24]  U. Dallmann Topological structures of three-dimensional vortex flow separation , 1983 .

[25]  Gerik Scheuermann,et al.  Smooth Stream Surfaces of Fourth Order Precision , 2009, Comput. Graph. Forum.

[26]  Pheng-Ann Heng,et al.  Principal stream surfaces , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[27]  Robert S. Laramee,et al.  Easy integral surfaces: a fast, quad-based stream and path surface algorithm , 2009, CGI.