Parametric representation of a surface pencil with a common spatial geodesic

In this paper, we study the problem of constructing a family of surfaces from a given spatial geodesic curve. We derive a parametric representation for a surface pencil whose members share the same geodesic curve as an isoparametric curve. By utilizing the Frenet trihedron frame along the given geodesic, we express the surface pencil as a linear combination of the components of this local coordinate frame, and derive the necessary and sufficient conditions for the coefficients to satisfy both the geodesic and the isoparametric requirements. We illustrate and verify the method by finding exact surface pencil formulations for some simple surfaces, such as surfaces of revolution and ruled surfaces. Finally, we demonstrate the use of this method in a garment design application. q 2003 Elsevier Ltd. All rights reserved.

[1]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[2]  Ron Kimmel,et al.  Fast Marching Methods for Computing Distance Maps and Shortest Paths , 1996 .

[3]  Ron Kimmel,et al.  Finding shortest paths on surfaces by fast global approximation and precise local refinement , 1995, Other Conferences.

[4]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[5]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[6]  Laurent D. Cohen,et al.  Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.

[7]  Sariel Har-Peled,et al.  Approximate Shortest Paths and Geodesic Diameter on a Convex Polytope in Three Dimensions , 1999, Discret. Comput. Geom..

[8]  Dominique Jeulin,et al.  Estimation of the transport properties of polymer composites by geodesic propagation , 1994 .

[9]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Leonidas J. Guibas,et al.  Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.

[11]  R. Kimmel,et al.  Finding shortest paths on surfaces , 1994 .

[12]  Jiwen Zheng C-Bézier curves and surfaces , 1999 .

[13]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1996, SCG '96.

[14]  Zhang Jiwen,et al.  C-curves: An extension of cubic curves , 1996, Comput. Aided Geom. Des..

[15]  Christian Lantuéjoul,et al.  Geodesic methods in quantitative image analysis , 1984, Pattern Recognit..

[16]  Nikos A. Aspragathos,et al.  Design of plane developments of doubly curved surfaces , 1997, Comput. Aided Des..

[17]  R. Heikes,et al.  Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid , 1995 .

[18]  L. Gründig,et al.  Geodesic and Semi-Geodesic Line Algorithms for Cutting Pattern Generation of Architectural Textile Structures , 1997 .

[19]  Steve Bryson Virtual spacetime: an environment for the visualization of curved spacetimes via geodesic flows , 1992, Proceedings Visualization '92.

[20]  Alfred M. Bruckstein,et al.  Multivalued distance maps for motion planning on surfaces with moving obstacles , 1998, IEEE Trans. Robotics Autom..

[21]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Reinhard Klein,et al.  Computing Geodesic Paths on Triangular Meshes , 2002, International Conference in Central Europe on Computer Graphics and Visualization.

[23]  David L. Williamson,et al.  Integration of the barotropic vorticity equation on a spherical geodesic grid , 1968 .

[24]  R. J. Haw,et al.  Geodesic Curves on Patched Polynomial Surfaces , 1983, Comput. Graph. Forum.

[25]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[26]  David A. Randall,et al.  Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid. Part II. A Detailed Description of the Grid and an Analysis of Numerical Accuracy , 1995 .

[27]  Nikos A. Aspragathos,et al.  Geodesic curvature preservation in surface flattening through constrained global optimization , 2001, Comput. Aided Des..

[28]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.

[29]  L. Schumaker,et al.  Curves and surfaces in geometric design , 1994 .

[30]  Ron Kimmel Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[31]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[32]  Jiwen Zhang,et al.  C-Bézier Curves and Surfaces , 1999, Graph. Model. Image Process..

[33]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[34]  R. J. Haw,et al.  An Application of Geodesic Curves to Sail Design , 1985, Comput. Graph. Forum.

[35]  Pekka J. Toivanen,et al.  Erratum to "New geodesic distance transforms for gray-scale images" [Pattern Recognition Letters 17 (1996) 437-450] , 1996, Pattern Recognit. Lett..

[36]  D. Ross Computer-aided design , 1961, CACM.

[37]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[38]  Roman Goldenberg,et al.  Fast Geodesic Active Contours , 1999, Scale-Space.