Effective wavelength scaling for optical antennas.

In antenna theory, antenna parameters are directly related to the wavelength lambda of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by replacing lambda by a linearly scaled effective wavelength lambda(eff)=n(1)+n(2)lambda/lambda(p), with lambda(p) being the plasma wavelength and n(1), n(2) being coefficients that depend on geometry and material properties. It is assumed that the antenna is made of linear segments with radii R << lambda. Optical antennas hold great promise for increasing the efficiency of photovoltaics, light-emitting devices, and optical sensors.

[1]  S. Choulis,et al.  Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices , 2006 .

[2]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[3]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[4]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[5]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[6]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[7]  Thomas A. Milligan,et al.  Modern Antenna Design: Milligan/Modern Antenna Design , 2005 .

[8]  Lukas Novotny,et al.  Nanoplasmonic enhancement of single-molecule fluorescence , 2007 .

[9]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[10]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[11]  Xing Zhu,et al.  Near-Field Optics: Principles and Applications , 2000 .

[12]  Annemarie Pucci,et al.  Resonances of individual metal nanowires in the infrared , 2006 .

[13]  D. B. Rutledge,et al.  Infrared and submillimetre antennas , 1978 .

[14]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[15]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[16]  H. Atwater,et al.  Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. , 2006, Nano letters (Print).

[17]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[18]  William L. Schaich,et al.  Measurement of the resonant lengths of infrared dipole antennas , 2000 .

[19]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[20]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[21]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[22]  C. Mirkin,et al.  Multipole plasmon resonances in gold nanorods. , 2006, The journal of physical chemistry. B.

[23]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[24]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[25]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[26]  T. Milligan Modern Antenna Design , 1985 .