Spectrum of sizes for perfect 2-deletion-correcting codes of length 4
暂无分享,去创建一个
[1] Patrick A. H. Bours. On the construction of perfect deletion-correcting codes using design theory , 1995, Des. Codes Cryptogr..
[2] Gennian Ge,et al. On group-divisible designs with block size four and group-type 6um1 , 2004, Discret. Math..
[3] Krister M. Swenson,et al. Genomic Distances under Deletions and Insertions , 2004, Theor. Comput. Sci..
[4] Valentine Kabanets,et al. Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits , 2015, COCOON.
[5] Jianmin Wang. Some combinatorial constructions for optimal perfect deletion-correcting codes , 2008, Des. Codes Cryptogr..
[6] Jianxing Yin,et al. A Combinatorial Construction for Perfect Deletion-Correcting Codes , 2001, Des. Codes Cryptogr..
[7] Nabil Shalaby,et al. Existence of Perfect 4-Deletion-Correcting Codes with Length Six , 2002, Des. Codes Cryptogr..
[8] Gennian Ge,et al. Spectrum of Sizes for Perfect Deletion-Correcting Codes , 2010, SIAM J. Discret. Math..
[9] D. J. Kinniment. Synchronization and Arbitration in Digital Systems , 2008 .
[10] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[11] J. Yin,et al. Constructions for Perfect 5-Deletion-Correcting Codes of Length$7$ , 2006, IEEE Transactions on Information Theory.
[12] Schouhamer Immink,et al. Codes for mass data storage systems , 2004 .
[13] Alan Hartman. On small packing and covering designs with block size 4 , 1986, Discret. Math..
[14] Hao Shen,et al. Existence of $$(v, K_{1(3)}\cup\{{w}^*\})$$ -PBDs and its applications , 2008, Des. Codes Cryptogr..
[15] Gennian Ge,et al. Group divisible designs with block size four and group type gum1 for small g , 2004, Discret. Math..
[16] Vladimir I. Levenshtein,et al. Binary codes capable of correcting deletions, insertions, and reversals , 1965 .