Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity.
暂无分享,去创建一个
Xing-Chang Wei | Er-Ping Li | Ping Bai | Xing-Chang Wei | E. Li | P. Bai | M. Gu | Ming-Xia Gu
[1] O. Martin,et al. Resonant Optical Antennas , 2005, Science.
[2] Liesbet Lagae,et al. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides , 2009 .
[3] Mark L. Brongersma,et al. Plasmonics: the next chip-scale technology , 2006 .
[4] Mark L. Brongersma,et al. Plasmonics: Engineering optical nanoantennas , 2008 .
[5] Luis Martín-Moreno,et al. Nanofocusing with channel plasmon polaritons. , 2009, Nano letters.
[6] Harry A. Atwater. The promise of plasmonics. , 2007 .
[7] Nikolay I. Zheludev,et al. Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .
[8] S. Maier,et al. Plasmonics: The Promise of Highly Integrated Optical Devices , 2006, IEEE Journal of Selected Topics in Quantum Electronics.
[9] C. Jacoboni,et al. Electron' drift velocity and diffusivity in germanium , 1981 .
[10] E. Ozbay. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.
[11] P. Crozat,et al. 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.
[12] L. Lagae,et al. Local electrical detection of single nanoparticle plasmon resonance. , 2007, Nano letters.
[13] Sailing He,et al. Novel surface plasmon waveguide for high integration. , 2005, Optics express.
[14] Glenn D Boreman,et al. Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers. , 2002, Applied optics.
[15] F. J. García de abajo,et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.
[16] K. Saraswat,et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .
[17] X. Zhang,et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .
[18] H. Lezec,et al. Highly confined photon transport in subwavelength metallic slot waveguides. , 2006, Nano letters.
[19] Er-Ping Li,et al. Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding. , 2007, Optics express.
[20] S. Maier. Waveguiding: The best of both worlds , 2008 .
[21] D. Koller,et al. Organic plasmon-emitting diode , 2008 .
[22] Michal Lipson,et al. Subwavelength confinement in an integrated metal slot waveguide on silicon. , 2006, Optics letters.
[23] Er-Ping Li,et al. Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna , 2010, IEEE Photonics Technology Letters.
[24] Gianlorenzo Masini,et al. Ge-on-Si approaches to the detection of near-infrared light , 1999 .
[25] Federico Capasso,et al. Plasmonic laser antenna , 2006 .
[26] Andrea Alù,et al. Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .
[27] T. Ebbesen,et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.
[28] H. Chu,et al. Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain , 2008 .
[29] V. Shalaev,et al. Demonstration of a spaser-based nanolaser , 2009, Nature.
[30] Gordon S. Kino,et al. Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .