Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity.

A novel structure is proposed to electrically detect the plasmonic waves from a subwavelength plasmonic waveguide. By locating two L-shaped metallic nanorods in close proximity of each other at the end of the plasmonic waveguide, a metal-semiconductor-metal plasmonic detector is constructed. The L-shaped nanorods also form a dipole nanoantenna and a nanocavity to focus the photonic power into the active volume of the detector. The dimensions and locations of the L-shaped nanorods are studied to maximize the transmission efficiency of the photonic power from the plasmonic waveguide to the detector. Impedance matching with a sub is investigated to further improve the power transmission. Possible leads of the detector are discussed and their effects are investigated. Proposed detector has an ultra-compact and easy-to-fabricate planar structure, and a potentially THz speed, high responsivity as well as low power dissipation.

[1]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[2]  Liesbet Lagae,et al.  Electrical detection of confined gap plasmons in metal-insulator-metal waveguides , 2009 .

[3]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[4]  Mark L. Brongersma,et al.  Plasmonics: Engineering optical nanoantennas , 2008 .

[5]  Luis Martín-Moreno,et al.  Nanofocusing with channel plasmon polaritons. , 2009, Nano letters.

[6]  Harry A. Atwater The promise of plasmonics. , 2007 .

[7]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[8]  S. Maier,et al.  Plasmonics: The Promise of Highly Integrated Optical Devices , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  C. Jacoboni,et al.  Electron' drift velocity and diffusivity in germanium , 1981 .

[10]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[11]  P. Crozat,et al.  42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.

[12]  L. Lagae,et al.  Local electrical detection of single nanoparticle plasmon resonance. , 2007, Nano letters.

[13]  Sailing He,et al.  Novel surface plasmon waveguide for high integration. , 2005, Optics express.

[14]  Glenn D Boreman,et al.  Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers. , 2002, Applied optics.

[15]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[16]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[17]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[18]  H. Lezec,et al.  Highly confined photon transport in subwavelength metallic slot waveguides. , 2006, Nano letters.

[19]  Er-Ping Li,et al.  Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding. , 2007, Optics express.

[20]  S. Maier Waveguiding: The best of both worlds , 2008 .

[21]  D. Koller,et al.  Organic plasmon-emitting diode , 2008 .

[22]  Michal Lipson,et al.  Subwavelength confinement in an integrated metal slot waveguide on silicon. , 2006, Optics letters.

[23]  Er-Ping Li,et al.  Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna , 2010, IEEE Photonics Technology Letters.

[24]  Gianlorenzo Masini,et al.  Ge-on-Si approaches to the detection of near-infrared light , 1999 .

[25]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[26]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[27]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[28]  H. Chu,et al.  Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain , 2008 .

[29]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[30]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .