THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS

The Element-Free Galerkin (EFG) method allows one to use a nodal data structure (usually with an underlying cell structure) within the domain of a body of arbitrary shape. The usual EFG combines Moving Least-Squares (MLS) interpolants with a variational principle (weak form) and has been used to solve two-dimensional (2-D) boundary value problems in mechanics such as in potential theory, elasticity and fracture. This paper proposes a combination of MLS interpolants with Boundary Integral Equations (BIE) in order to retain both the meshless attribute of the former and the dimensionality advantage of the latter! This new method, called the Boundary Node Method (BNM), only requires a nodal data structure on the bounding surface of a body whose dimension is one less than that of the domain itself. An underlying cell structure is again used for numerical integration. In principle, the BNM, for 3-D problems, should be extremely powerful since one would only need to put nodes (points) on the surface of a solid model for an object. Numerical results are presented in this paper for the solution of Laplace's equation in 2-D. Dirichlet, Neumann and mixed problems have been solved, some on bodies with piecewise straight and others with curved boundaries. Results from these numerical examples are extremely encouraging. © 1997 by John Wiley & Sons, Ltd.