Proton-induced SEU in SiGe digital logic at cryogenic temperatures

In this work we present, for the first time, experimental results confirming an increase in single event upset (SEU) susceptibility at cold temperatures using 63 MeV protons incident on liquid-nitrogen immersed 16-bit shift registers. Silicon germanium (SiGe) BiCMOS technology has the potential to be a key platform for extreme environment electronics due to its record (Si-based) cryogenic performance and built-in multi-Mrad (SiO2) total ionizing dose (TID) tolerance.

[1]  C. Ulaganathan,et al.  SiGe BiCMOS Precision Voltage References for Extreme Temperature Range Electronics , 2006, 2006 Bipolar/BiCMOS Circuits and Technology Meeting.

[2]  J.D. Cressler,et al.  A 10 Mbps SiGe BiCMOS Transceiver for Operation Down to Cryogenic Temperatures , 2007, 2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[3]  Andrew Holmes-Siedle,et al.  Handbook of Radiation Effects , 1993 .

[4]  R. Reed,et al.  Heavy ion and proton-induced single event multiple upset , 1997 .

[5]  J.D. Cressler,et al.  Application of RHBD Techniques to SEU Hardening of Third-Generation SiGe HBT Logic Circuits , 2006, IEEE Transactions on Nuclear Science.

[6]  J. Dziewior,et al.  Auger coefficients for highly doped and highly excited silicon , 1977 .

[7]  R. Krithivasan,et al.  Half-terahertz operation of SiGe HBTs , 2006, IEEE Electron Device Letters.

[8]  E. Blackmore,et al.  Effects of Total Dose Irradiation on Single-Event Upset Hardness , 2005, 2005 8th European Conference on Radiation and Its Effects on Components and Systems.

[9]  Kenneth A. LaBel,et al.  Particle-induced bit errors in high performance fiber optic data links for satellite data management , 1994 .

[10]  J. Barak,et al.  Modeling of proton induced SEUs , 1996 .

[11]  G. Espinel,et al.  Substrate Engineering Concepts to Mitigate Charge Collection in Deep Trench Isolation Technologies , 2006, IEEE Transactions on Nuclear Science.

[12]  D.L. Harame,et al.  Manufacturability demonstration of an integrated SiGe HBT technology for the analog and wireless marketplace , 1996, International Electron Devices Meeting. Technical Digest.

[13]  L. Rubin Low Temperature Electronics: Physics, Devices, Circuits, and Applications , 2002 .

[14]  J.D. Black,et al.  The Application of RHBD to n-MOSFETs Intended for Use in Cryogenic-Temperature Radiation Environments , 2007, IEEE Transactions on Nuclear Science.

[15]  M. Shea,et al.  A comparison of energetic solar proton events during the declining phase of four solar cycles (cycles 19–22) , 1995 .

[16]  R. Reed,et al.  A comparative study of heavy-ion and proton-induced bit-error sensitivity and complex burst-error modes in commercially available high-speed SiGe BiCMOS , 2004, IEEE Transactions on Nuclear Science.

[17]  R. L. Pease,et al.  Analytical model for proton radiation effects in bipolar devices , 2002 .

[18]  John D. Cressler,et al.  On the Potential of SiGe HBTs for Extreme Environment Electronics , 2005, Proceedings of the IEEE.

[19]  Bongim Jun,et al.  The Effects of Irradiation Temperature on the Proton Response of SiGe HBTs , 2006, IEEE Transactions on Nuclear Science.

[20]  R. Krithivasan,et al.  A Generalized SiGe HBT Single-Event Effects Model for On-Orbit Event Rate Calculations , 2007, IEEE Transactions on Nuclear Science.

[21]  John D. Cressler,et al.  An SEU hardening approach for high-speed SiGe HBT digital logic , 2003 .

[22]  P.E. Dodd,et al.  Physics-based simulation of single-event effects , 2005, IEEE Transactions on Device and Materials Reliability.

[23]  E. L. Petersen,et al.  The SEU figure of merit and proton upset rate calculations , 1998 .

[24]  C. Casteneda,et al.  Calibrated charged particle radiation system with precision dosimetric measurement and control , 1989 .

[25]  Wei-Min Lance Kuo,et al.  Proton radiation response of monolithic Millimeter-wave transceiver building blocks implemented in 200 GHz SiGe technology , 2004, IEEE Transactions on Nuclear Science.

[26]  Emmanuel Augendre,et al.  Short-channel radiation effect in 60 MeV proton irradiated 0.13 /spl mu/m CMOS transistors , 2003 .

[27]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[28]  J. G. Rollins,et al.  Estimation of proton upset rates from heavy ion test data (ICs) , 1990 .

[29]  R. Reed,et al.  Single event effects in circuit-hardened SiGe HBT logic at gigabit per second data rates , 2000 .

[30]  S. Jeng,et al.  Self-aligned SiGe NPN transistors with 285 GHz f/sub MAX/ and 207 GHz f/sub T/ in a manufacturable technology , 2002, IEEE Electron Device Letters.

[31]  S. Bourdarie,et al.  Model for the geostationary electron environment: POLE , 2003 .

[32]  J.D. Cressler,et al.  SEU Error Signature Analysis of Gbit/s SiGe Logic Circuits Using a Pulsed Laser Microprobe , 2006, IEEE Transactions on Nuclear Science.

[33]  M. Turowski,et al.  An Evaluation of Transistor-Layout RHBD Techniques for SEE Mitigation in SiGe HBTs , 2007, IEEE Transactions on Nuclear Science.

[34]  J. C. Pickel,et al.  Heavy-ion broad-beam and microprobe studies of single-event upsets in 0.20-/spl mu/m SiGe heterojunction bipolar transistors and circuits , 2003 .

[35]  J. Barak Analytical microdosimetry model for proton-induced SEU in modern devices , 2001 .

[36]  Yuan Lu,et al.  A High-Slew Rate SiGe BiCMOS Operational Amplifier for Operation Down to Deep Cryogenic Temperatures , 2006, 2006 Bipolar/BiCMOS Circuits and Technology Meeting.