An SCF method for hole states

An SCF method is derived for doublet states with one vacancy in an orbital within the occupied manifold (hole states). This method gives an upper bound to an excited state energy. Hence it is a stable procedure which is bounded from below and cannot collapse to a lower energy SCF state. This new procedure is compared with several other open‐shell SCF procedures which have been advocated for the ground doublet state.

[1]  H. Huzinaga ANALYTICAL METHODS IN HARTREE-FOCK SELF-CONSISTENT FIELD THEORY , 1961 .

[2]  V. R. Saunders,et al.  On methods for converging open-shell Hartree-Fock wave-functions , 1974 .

[3]  G. Segal Alternative Technique for the Calculation of Single‐Determinant Open‐Shell SCF Functions Which Are Eigenfunctions of S2 , 1970 .

[4]  J. S. Binkley,et al.  The calculation of spin-restricted single-determinant wavefunctions , 1974 .

[5]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[6]  V. R. Saunders,et al.  A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions , 1973 .

[7]  W. Goddard,et al.  The incorporation of quadratic convergence into open-shell self-consistent field equations , 1970 .

[8]  R. Pitzer,et al.  CALCULATIONS ON THE PERMANGANATE ION IN THE GROUND AND EXCITED STATES , 1976 .

[9]  R. Lefebvre L’interaction de configuration comme méthode de calcul des orbitales moléculaires du champ self-consistent: II. — État fondamental d’un système à un nombre impair d’électrons , 1957 .

[10]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .

[11]  Ernest R. Davidson,et al.  Spin-restricted open-shell self-consistent-field theory , 1973 .

[12]  I. H. Hillier,et al.  A new SCF procedure and its applications to ab initio calculations of the states of the fluorosulphate radical , 1970 .

[13]  W. Goddard,et al.  The orthogonality constrained basis set expansion method for treating off-diagonal lagrange multipliers in calculations of electronic wave functions☆ , 1969 .