Comparison criteria for odd order forced nonlinear functional neutral dynamic equations

The purpose of this paper is to establish comparison criteria for forced odd order neutral dynamic equation x ( t ) + p ( t ) x ( ? ( t ) ) n + q t ? γ x ? t = g ( t ) , on an above-unbounded time scale T , where n ? 3 ; ? γ ( u ) ? u γ - 1 u , γ 0 ; p , q ? C rd t 0 , ∞ T , R + on t 0 , ∞ T ; g ? C rd ( t 0 , ∞ ) T , R ) ; and ? , ? : T ? T are rd-continuous functions such that lim t ? ∞ ? ( t ) = lim t ? ∞ ? ( t ) = ∞ . Comparison criteria have been established without assuming certain restrictive conditions on the time scale T which improve some results in a number of recent papers.

[1]  Qingkai Kong,et al.  INTERVAL CRITERIA FOR FORCED OSCILLATION OF DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AND NONLINEARITIES GIVEN BY RIEMANN-STIELTJES INTEGRALS , 2012 .

[2]  Samir H. Saker,et al.  Oscillation Criteria for Sublinear Half-Linear Delay Dynamic Equations , 2009 .

[3]  Taher S. Hassan,et al.  Oscillation criteria for half-linear dynamic equations on time scales , 2008 .

[4]  Taher S. Hassan,et al.  Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales , 2011, Appl. Math. Comput..

[5]  Samir H. Saker,et al.  Hille and Nehari type criteria for third-order dynamic equations , 2007 .

[6]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[7]  Martin Bohner,et al.  Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations. , 2007 .

[8]  Ravi P. Agarwal,et al.  Oscillation and asymptotic behavior of third-order nonlinear retarded dynamic equations , 2012, Appl. Math. Comput..

[9]  Lynn Erbe,et al.  Oscillation of third order nonlinear functional dynamic equations on time scales , 2010 .

[10]  Ondrej Doslý,et al.  A necessary and sufficient condition for oscillation of the Sturm--Liouville dynamic equation on time scales , 2002 .

[11]  Ravi P. Agarwal,et al.  Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations , 2009 .

[12]  John R. Graef,et al.  On oscillatory and asymptotic properties of solutions of certain nonlinear third order differential equations , 1998 .

[13]  Samir H. Saker,et al.  Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales , 2005 .

[14]  Martin Bohner,et al.  OSCILLATION AND BOUNDEDNESS OF SOLUTIONS TO FIRST AND SECOND ORDER FORCED FUNCTIONAL DYNAMIC EQUATIONS WITH MIXED NONLINEARITIES , 2009 .

[15]  Elvan Akin-Bohner,et al.  Oscillation Properties of an Emden-Fowler Type Equation on Discrete Time Scales , 2003 .

[16]  Zhenlai Han,et al.  Oscillation criteria for a class of second-order Emden–Fowler delay dynamic equations on time scales☆ , 2007 .

[17]  Lynn Erbe,et al.  Oscillation of Second Order Functional Dynamic Equations , 2010 .

[18]  Lynn Erbe,et al.  FORCED OSCILLATION OF SECOND ORDER DIFFERENTIAL EQUATIONS WITH MIXED NONLINEARITIES , 2011 .

[19]  Taher S. Hassan,et al.  Oscillation of third order nonlinear delay dynamic equations on time scales , 2009, Math. Comput. Model..

[20]  Elmetwally M. Elabbasy,et al.  Oscillation of solutions for third order functional dynamic equations. , 2010 .

[21]  Lynn Erbe,et al.  Oscillation of even order nonlinear delay dynamic equations on time scales , 2013 .

[22]  Lynn Erbe,et al.  Oscillation of third order functional dynamic equations with mixed arguments on time scales , 2010 .

[23]  Qingkai Kong,et al.  INTERVAL CRITERIA FOR FORCED OSCILLATION OF DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN, DAMPING, AND MIXED NONLINEARITIES , 2011 .

[24]  Samir H. Saker,et al.  Oscillation Criteria for Half-Linear Delay Dynamic Equations on Time Scales , 2009 .