Miniaturized Lab System for Future Cold Atom Experiments in Microgravity

[1]  M. Modugno,et al.  Bose-Einstein condensate with tunable interactions , 2017 .

[2]  Alexander Sahm,et al.  High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments. , 2015, Applied optics.

[3]  X. Chen,et al.  Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.

[4]  S. Capozziello,et al.  Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission , 2014, 1404.4307.

[5]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.

[6]  G. Erbert,et al.  Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. , 2014, Optics express.

[7]  P. Jetzer,et al.  STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.

[8]  F. Nez,et al.  State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu , 2013, 1309.3393.

[9]  A. Landragin,et al.  Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.

[10]  M. Inguscio,et al.  Sub-Doppler laser cooling of potassium atoms , 2011, 1107.2337.

[11]  Holger Ahlers,et al.  Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[12]  W. Ertmer,et al.  Simple method for generating Bose-Einstein condensates in a weak hybrid trap , 2010, 1012.4222.

[13]  A. Aspect,et al.  All-optical runaway evaporation to Bose-Einstein condensation , 2009, 0903.2745.

[14]  G. Lamporesi,et al.  Determination of the newtonian gravitational constant using atom interferometry. , 2008, Physical review letters.

[15]  A. Clairon,et al.  Limits to the sensitivity of a low noise compact atomic gravimeter , 2008, 0801.1270.

[16]  M. Modugno,et al.  Atom interferometry with a weakly interacting Bose-Einstein condensate. , 2007, Physical review letters.

[17]  W. Schleich,et al.  A freely falling magneto-optical trap drop tower experiment , 2007 .

[18]  M. Modugno,et al.  39K Bose-Einstein condensate with tunable interactions. , 2007, Physical review letters.

[19]  A. Wicht,et al.  A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry , 2003 .

[20]  D. Weiss,et al.  Loading and compressing Cs atoms in a very far-off-resonant light trap , 2001 .

[21]  R.J.C. Spreeuw,et al.  The Two-Dimensional Magneto-optical Trap as a Source of Slow Atoms , 1998 .

[22]  S. Chu,et al.  Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer , 1992 .

[23]  André Clairon,et al.  Ramsey resonance in a zacharias fountain , 1991 .

[24]  F. Riehle,et al.  Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.

[25]  C. Jönsson,et al.  Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten , 1961 .

[26]  C. J. Davisson,et al.  Diffraction of Electrons by a Crystal of Nickel , 1927 .

[27]  L. Broglie,et al.  XXXV. A Tentative Theory of Light Quanta , 1924 .

[28]  Count Alexander Humboldt XCIII. On the laws observed in the distribution of vegetable forms , 1816 .