Miniaturized Lab System for Future Cold Atom Experiments in Microgravity
暂无分享,去创建一个
P. Wessels | W. Ertmer | C. Grzeschik | M. Krutzik | C. Lämmerzahl | A. Peters | T. Wendrich | A. Wicht | D. Schlippert | S. Herrmann | C. Vogt | M. Damjanic | M. Schiemangk | E. Luvsandamdin | A. Kohfeldt | J. Hartwig | S. Kulas | A. Resch | Sven Ganske | Jonas Matthias | Ernst Maria Rasel | J. Matthias
[1] M. Modugno,et al. Bose-Einstein condensate with tunable interactions , 2017 .
[2] Alexander Sahm,et al. High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments. , 2015, Applied optics.
[3] X. Chen,et al. Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.
[4] S. Capozziello,et al. Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission , 2014, 1404.4307.
[5] W. Schleich,et al. Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.
[6] G. Erbert,et al. Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. , 2014, Optics express.
[7] P. Jetzer,et al. STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.
[8] F. Nez,et al. State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu , 2013, 1309.3393.
[9] A. Landragin,et al. Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.
[10] M. Inguscio,et al. Sub-Doppler laser cooling of potassium atoms , 2011, 1107.2337.
[11] Holger Ahlers,et al. Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).
[12] W. Ertmer,et al. Simple method for generating Bose-Einstein condensates in a weak hybrid trap , 2010, 1012.4222.
[13] A. Aspect,et al. All-optical runaway evaporation to Bose-Einstein condensation , 2009, 0903.2745.
[14] G. Lamporesi,et al. Determination of the newtonian gravitational constant using atom interferometry. , 2008, Physical review letters.
[15] A. Clairon,et al. Limits to the sensitivity of a low noise compact atomic gravimeter , 2008, 0801.1270.
[16] M. Modugno,et al. Atom interferometry with a weakly interacting Bose-Einstein condensate. , 2007, Physical review letters.
[17] W. Schleich,et al. A freely falling magneto-optical trap drop tower experiment , 2007 .
[18] M. Modugno,et al. 39K Bose-Einstein condensate with tunable interactions. , 2007, Physical review letters.
[19] A. Wicht,et al. A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry , 2003 .
[20] D. Weiss,et al. Loading and compressing Cs atoms in a very far-off-resonant light trap , 2001 .
[21] R.J.C. Spreeuw,et al. The Two-Dimensional Magneto-optical Trap as a Source of Slow Atoms , 1998 .
[22] S. Chu,et al. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer , 1992 .
[23] André Clairon,et al. Ramsey resonance in a zacharias fountain , 1991 .
[24] F. Riehle,et al. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.
[25] C. Jönsson,et al. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten , 1961 .
[26] C. J. Davisson,et al. Diffraction of Electrons by a Crystal of Nickel , 1927 .
[27] L. Broglie,et al. XXXV. A Tentative Theory of Light Quanta , 1924 .
[28] Count Alexander Humboldt. XCIII. On the laws observed in the distribution of vegetable forms , 1816 .