Anti-van der Waerden Numbers of 3-Term Arithmetic Progression

The \emph{anti-van der Waerden number}, denoted by $aw([n],k)$, is the smallest $r$ such that every exact $r$-coloring of $[n]$ contains a rainbow $k$-term arithmetic progression. Butler et. al. showed that $\lceil \log_3 n \rceil + 2 \le aw([n],3) \le \lceil \log_2 n \rceil + 1$, and conjectured that there exists a constant $C$ such that $aw([n],3) \le \lceil \log_3 n \rceil + C$. In this paper, we show this conjecture is true by determining $aw([n],3)$ for all $n$. We prove that for $7\cdot 3^{m-2}+1 \leq n \leq 21 \cdot 3^{m-2}$, \[ aw([n],3)=\left\{\begin{array}{ll} m+2, & \mbox{if $n=3^m$}\\ m+3, & \mbox{otherwise}. \end{array}\right.\]

[2]  R. Salem,et al.  On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[3]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[5]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[6]  Maria Axenovich,et al.  On Rainbow Arithmetic Progressions , 2004, Electron. J. Comb..

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Jaroslav Nesetril,et al.  Rainbow Arithmetic Progressions and Anti-Ramsey Results , 2003, Combinatorics, Probability and Computing.

[9]  Noga Alon,et al.  Sub-Ramsey numbers for arithmetic progressions , 1989, Graphs Comb..