Particle finite element method implementation for large deformation analysis using Abaqus

[1]  Chong Peng,et al.  GPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanics , 2021, Computers and Geotechnics.

[2]  Y. Dong Reseeding of particles in the material point method for soil–structure interactions , 2020 .

[3]  Z. Shan,et al.  Numerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slide, Quebec , 2020, Landslides.

[4]  Shun Wang,et al.  A simple hypoplastic model for overconsolidated clays , 2020, Acta Geotechnica.

[5]  Jae Hyun Kim,et al.  Extension of a basic hypoplastic model for overconsolidated clays , 2020, Computers and Geotechnics.

[6]  M. Xiao,et al.  Effect of deviator stress on the initiation of suffusion , 2020, Acta Geotechnica.

[7]  Wei Zhang,et al.  Dynamic modeling of large deformation slope failure using smoothed particle finite element method , 2020, Landslides.

[8]  J. Cui,et al.  Influence of Load Mode on Particle Crushing Characteristics of Silica Sand at High Stresses , 2020 .

[9]  Yulong Luo,et al.  Effect of open-framework gravel on suffusion in sandy gravel alluvium , 2020 .

[10]  Liang Wang,et al.  A case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslide , 2019, Landslides.

[11]  Wei Zhang,et al.  Application of the particle finite element method for large deformation consolidation analysis , 2019, Engineering Computations.

[12]  Wei Wu,et al.  An improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modelling , 2019, Journal of Hydrodynamics.

[13]  Wei Wu,et al.  LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling , 2019, Acta Geotechnica.

[14]  Xia-Ting Feng,et al.  Development of an explicit smoothed particle finite element method for geotechnical applications , 2019, Computers and Geotechnics.

[15]  Eugenio Oñate,et al.  A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences , 2019, Computer Methods in Applied Mechanics and Engineering.

[16]  Jürgen Grabe,et al.  Large scale parallelisation of the material point method with multiple GPUs , 2018, Computers and Geotechnics.

[17]  Antonio Gens,et al.  Coupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element Method , 2018, Computers and Geotechnics.

[18]  Scott W. Sloan,et al.  Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity , 2018, International journal for numerical and analytical methods in geomechanics (Print).

[19]  Zongrui Chen,et al.  A 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUS , 2018, Computers and Geotechnics.

[20]  Wei Zhang,et al.  Smoothed Particle Finite-Element Method for Large-Deformation Problems in Geomechanics , 2018, International Journal of Geomechanics.

[21]  Scott W. Sloan,et al.  Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity , 2017 .

[22]  Antonio Gens,et al.  Performance of mixed formulations for the particle finite element method in soil mechanics problems , 2017 .

[23]  Antonio Gens,et al.  Numerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM) , 2017 .

[24]  Javier Oliver,et al.  The particle finite element method (PFEM) in thermo‐mechanical problems , 2016 .

[25]  Antonia Larese,et al.  Numerical modelling of landslide‐generated waves with the particle finite element method (PFEM) and a non‐Newtonian flow model , 2016 .

[26]  Kenichi Soga,et al.  Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method , 2016 .

[27]  John P. Carter,et al.  Efficiency of high-order elements in large-deformation problems of geomechanics , 2015 .

[28]  J. C. Cante,et al.  On the numerical modeling of granular material flows via the Particle Finite Element Method (PFEM) , 2015 .

[29]  Wojciech Tomasz Sołowski,et al.  Evaluation of material point method for use in geotechnics , 2015 .

[30]  Mark Randolph,et al.  A GPU parallel computing strategy for the material point method , 2015 .

[31]  M. Randolph,et al.  Large deformation finite element analyses in geotechnical engineering , 2015 .

[32]  L. Cascini,et al.  SPH run-out modelling of channelised landslides of the flow type , 2014 .

[33]  Kristian Krabbenhoft,et al.  Particle finite element analysis of the granular column collapse problem , 2014 .

[34]  L. Cascini,et al.  Application of a SPH depth-integrated model to landslide run-out analysis , 2014, Landslides.

[35]  Dong Wang,et al.  A simple implementation of RITSS and its application in large deformation analysis , 2014 .

[36]  Dong Wang,et al.  Particle finite element analysis of large deformation and granular flow problems , 2013 .

[37]  Eugenio Oñate,et al.  Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method , 2013 .

[38]  E. Oñate,et al.  A coupled PFEM–Eulerian approach for the solution of porous FSI problems , 2012, Computational Mechanics.

[39]  E. Oñate,et al.  Possibilities of the particle finite element method for fluid–soil–structure interaction problems , 2011 .

[40]  Eugenio Oñate,et al.  Modeling of ground excavation with the particle finite element method , 2010 .

[41]  Majidreza Nazem,et al.  Arbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problems , 2009 .

[42]  Ha H. Bui,et al.  Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model , 2008 .

[43]  D. Sheng,et al.  Stress integration and mesh refinement for large deformation in geomechanics , 2006 .

[44]  M. Randolph,et al.  Combining upper bound and strain path methods for evaluating penetration resistance , 2005 .

[45]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[46]  Mark Randolph,et al.  H-ADAPTIVE FE ANALYSIS OF ELASTO-PLASTIC NON-HOMOGENEOUS SOIL WITH LARGE DEFORMATION , 1998 .

[47]  M. Randolph,et al.  A practical numerical approach for large deformation problems in soil , 1998 .

[48]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[49]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[50]  G. G. Meyerhof The Ultimate Bearing Capacity of Foudations , 1951 .

[51]  Haruyuki Yamamoto,et al.  Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea , 2021, Engineering Geology.

[52]  Cihai Xu,et al.  Numerical modeling of object penetration in geotechnical engineering , 2016 .

[53]  Kristian Krabbenhoft,et al.  Numerical simulation of a flow-like landslide using the particle finite element method , 2015 .

[54]  Jürgen Grabe,et al.  Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations , 2011 .

[55]  Scott W. Sloan,et al.  Rigid-plastic large-deformation analysis of geotechnical penetration problems , 2011 .

[56]  Terry Kim Molstad Finite deformation analysis using the finite element method , 1977 .

[57]  L. Prandtl,et al.  Hauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden , 1921 .