Model Order Selection in Seasonal/Cyclical Long Memory Models

We propose an automatic model order selection procedure for k-factor GARMA processes. The procedure is based on sequential tests of the maximum of the periodogram and semiparametric estimators of the model parameters. As a byproduct, we introduce a generalized version of Walker's large sample g-test that allows to test for persistent periodicity in stationary ARMA processes. Our simulation studies show that the procedure performs well in identifying the correct model order under various circumstances. An application to Californian electricity load data illustrates its value in empirical analyses and allows new insights into the periodicity of this process that has been subject of several forecasting exercises.

[1]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[2]  R. Leipus,et al.  A generalized fractionally differencing approach in long-memory modeling , 1995 .

[3]  A Regime Switching Long Memory Model for Electricity Prices , 2006 .

[4]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[5]  Marc Henry,et al.  Bandwidth Choice in Gaussian Semiparametric Estimation of Long Range Dependence , 1996 .

[6]  H. T. Davis,et al.  Periodic Splines and Spectral Estimation , 1974 .

[7]  S. Porter-Hudak An Application of the Seasonal Fractionally Differenced Model to the Monetary Aggregates , 1990 .

[8]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[9]  Carlos Velasco Gómez Gaussian semiparametric estimation of non-stationary time series , 1998 .

[10]  M. Nielsen,et al.  A Regime Switching Long Memory Model for Electricity Prices , 2006 .

[11]  P. Robinson Efficient Tests of Nonstationary Hypotheses , 1994 .

[12]  L. A. Gil-Alanaa Testing The Existence of Multiple Cycles in Financial and Economic Time Series , 2007 .

[13]  Uwe Hassler,et al.  Semiparametric Inference and Bandwidth Choice under Long Memory: experimental evidence , 2013 .

[14]  Dean Fantazzini,et al.  Long Memory and Periodicity in Intraday Volatility , 2015 .

[15]  Marc Henry,et al.  Robust Automatic Bandwidth for Long Memory , 2001 .

[16]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[17]  J. Bai,et al.  Estimating Multiple Breaks One at a Time , 1997, Econometric Theory.

[18]  Francesco Lisi,et al.  k -Factor GARMA models for intraday volatility forecasting , 2003 .

[19]  Josu Arteche,et al.  Semiparametric Inference in Seasonal and Cyclical Long Memory Processes , 2000 .

[20]  M. Caporin,et al.  Periodic Long-Memory GARCH Models , 2008 .

[21]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[22]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[23]  TESTING FOR GENERAL FRACTIONAL INTEGRATION IN THE TIME DOMAIN , 2009, Econometric Theory.

[24]  L. J. Soares,et al.  Forecasting electricity demand using generalized long memory , 2003 .

[25]  P. Robinson,et al.  LONG AND SHORT MEMORY CONDITIONAL HETEROSKEDASTICITY IN ESTIMATING THE MEMORY PARAMETER OF LEVELS , 1999, Econometric Theory.

[26]  Dominique Guegan,et al.  Forecasting electricity spot market prices with a k-factor GIGARCH process , 2007 .

[27]  L. Gil‐Alana Seasonal long memory in the aggregate output , 2002 .

[28]  Young K. Truong,et al.  RATE OF CONVERGENCE FOR LOGSPLINE SPECTRAL DENSITY ESTIMATION , 1995 .

[29]  H. Hartley,et al.  Tests of significance in harmonic analysis. , 1949, Biometrika.

[30]  H. L. Gray,et al.  A k‐Factor GARMA Long‐memory Model , 1998 .

[31]  H. L. Gray,et al.  ON GENERALIZED FRACTIONAL PROCESSES , 1989 .

[33]  Uwe Hassler,et al.  MIS)SPECIFICATION OF LONG MEMORY IN SEASONAL TIME SERIES , 1994 .

[34]  R. Weron,et al.  Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models , 2008 .

[35]  P. Soulier,et al.  Estimation of the location and exponent of the spectral singularity of a long memory process , 2004 .