Ribbon 2–knots, 1 + 1 = 2 and Duflo’s theorem for arbitrary Lie algebras

We explain a direct topological proof for the multiplicativity of Duflo isomorphism for arbitrary finite dimensional Lie algebras, and derive the explicit formula for the Duflo map. The proof follows a series of implications, starting with "the calculation 1+1=2 on a 4D abacus", using the study of homomorphic expansions (aka universal finite type invariants) for ribbon 2-knots, and the relationship between the corresponding associated graded space of arrow diagrams and universal enveloping algebras. This complements the results of the first author, Le and Thurston, where similar arguments using a "3D abacus" and the Kontsevich Integral were used to derive Duflo's theorem for metrized Lie algebras; and results of the first two authors on finite type invariants of w-knotted objects, which also imply a relation of 2-knots with Duflo's theorem in full generality, though via a lengthier path.

[1]  D. Bar-Natan,et al.  Finite type invariants of w-knotted objects II: tangles, foams and the Kashiwara–Vergne problem , 2014, Mathematische Annalen.

[2]  D. Bar-Natan,et al.  Finite-type invariants of w-knotted objects, I: w-knots and the Alexander polynomial , 2014, 1405.1956.

[3]  A. Alekseev,et al.  Drinfeld associators, Braid groups and explicit solutions of the Kashiwara–Vergne equations , 2009, 0903.4067.

[4]  Tara E. Brendle,et al.  Configuration spaces of rings and wickets , 2008, 0805.4354.

[5]  A. Alekseev,et al.  The Kashiwara-Vergne conjecture and Drinfeld’s associators , 2008, 0802.4300.

[6]  C. Torossian The Kashiwara-Vergne conjecture , 2007, 0706.2595.

[7]  D. Thurston,et al.  Two applications of elementary knot theory to Lie algebras and Vassiliev invariants , 2002, math/0204311.

[8]  S. Satoh VIRTUAL KNOT PRESENTATION OF RIBBON TORUS-KNOTS , 2000 .

[9]  V. Jones Planar algebras, I , 1999, math/9909027.

[10]  M. Saito,et al.  Knotted Surfaces and Their Diagrams , 1997 .

[11]  Dror Bar-Natan,et al.  On the Vassiliev knot invariants , 1995 .

[12]  Masaki Kashiwara,et al.  The Campbell-Hausdorff formula and invariant hyperfunctions , 1978 .

[13]  Zsuzsanna Dancso FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS II: THE DOUBLE TREE CONSTRUCTION , 2014 .

[14]  Deborah L. Goldsmith,et al.  The theory of motion groups. , 1981 .

[15]  M. Duflo Opérateurs différentiels bi-invariants sur un groupe de Lie , 1977 .

[16]  M. Duflo Caractères des groupes et des algèbres de Lie résolubles , 1970 .

[17]  Harish-Chandra On some applications of the universal enveloping algebra of a semisimple Lie algebra , 1951 .