Ribbon 2–knots, 1 + 1 = 2 and Duflo’s theorem for arbitrary Lie algebras
暂无分享,去创建一个
[1] D. Bar-Natan,et al. Finite type invariants of w-knotted objects II: tangles, foams and the Kashiwara–Vergne problem , 2014, Mathematische Annalen.
[2] D. Bar-Natan,et al. Finite-type invariants of w-knotted objects, I: w-knots and the Alexander polynomial , 2014, 1405.1956.
[3] A. Alekseev,et al. Drinfeld associators, Braid groups and explicit solutions of the Kashiwara–Vergne equations , 2009, 0903.4067.
[4] Tara E. Brendle,et al. Configuration spaces of rings and wickets , 2008, 0805.4354.
[5] A. Alekseev,et al. The Kashiwara-Vergne conjecture and Drinfeld’s associators , 2008, 0802.4300.
[6] C. Torossian. The Kashiwara-Vergne conjecture , 2007, 0706.2595.
[7] D. Thurston,et al. Two applications of elementary knot theory to Lie algebras and Vassiliev invariants , 2002, math/0204311.
[8] S. Satoh. VIRTUAL KNOT PRESENTATION OF RIBBON TORUS-KNOTS , 2000 .
[9] V. Jones. Planar algebras, I , 1999, math/9909027.
[10] M. Saito,et al. Knotted Surfaces and Their Diagrams , 1997 .
[11] Dror Bar-Natan,et al. On the Vassiliev knot invariants , 1995 .
[12] Masaki Kashiwara,et al. The Campbell-Hausdorff formula and invariant hyperfunctions , 1978 .
[13] Zsuzsanna Dancso. FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS II: THE DOUBLE TREE CONSTRUCTION , 2014 .
[14] Deborah L. Goldsmith,et al. The theory of motion groups. , 1981 .
[15] M. Duflo. Opérateurs différentiels bi-invariants sur un groupe de Lie , 1977 .
[16] M. Duflo. Caractères des groupes et des algèbres de Lie résolubles , 1970 .
[17] Harish-Chandra. On some applications of the universal enveloping algebra of a semisimple Lie algebra , 1951 .