The 0.7–5.3 μm IR spectra of Mercury and the Moon: Evidence for high-Ca clinopyroxene on Mercury

We present infrared spectra of Mercury and the Moon in the wavelength range 0.7--5.3 $\mu$m obtained with the SpeX spectrograph at the NASA Infrared Telescope Facility. The spectra were acquired from pole and terminator locations of Mercury'ssurface and of Mersenius C and the Copernicus central peak on the Moon. Spectra of both bodies were measured in close temporal succession and were reduced in thesame manner with identical calibration stars to minimize differences in the reduction process. The Copernicus spectra display the expected absorption features dueto mafic minerals in the near infrared and show spectral features in the SiO combination/overtone vibrational band region above 4 $\mu$m. The spectra of Mercuryfrom longitude 170$^\circ$ and north and south midlatitudes display a 1-$\mu$m absorption band indicative of high-Ca clinopyroxene, while a spectrum from longitude 260$^\circ$ and northern midlatitudes does not. The Mercury spectra show a broad feature of low emittance over the full 3--5 $\mu$m thermal infrared region, butno narrow features in this spectral range. The longitude 260$^\circ$ spectrum shows excess thermal emission around 5 $\mu$m attributable to the existence of a thermal gradient in the insolated dayside regolith. The thermal-IR spectra suggesta significant difference in the compositional and/or structural properties of Mercury and the Moon that may be due to grain size, absorption coefficient, or the magnitude of near-surface thermal gradients. The results indicate that the composition of Mercury's surface is heterogeneous on regional scales, and that the nearinfrared wavelength range provides more discriminative information on the surfacecomposition than the 2--4 $\mu$m region, where the solar reflected and thermallyemitted radiation contribute approximately equally to the observed flux of thesebodies.

[1]  G. J. Taylor,et al.  Remote sensing studies of the terrain northwest of Humorum Basin , 1993 .

[2]  Wendell W. Mendell,et al.  The dependence of reflectance spectra of Mercury on surface terrain , 1984 .

[3]  Paul G. Lucey,et al.  Lunar pure anorthosite as a spectral analog for Mercury , 2002 .

[4]  Johan Warell,et al.  Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling , 2004 .

[5]  Johan Warell,et al.  Properties of the Hermean regolith: I. Global regolith albedo variation at scale from multicolor CCD imaging , 2001 .

[6]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[7]  Paul G. Lucey,et al.  Recalibrated Mariner 10 Color Mosaics: Implications for Mercurian Volcanism , 1997, Science.

[8]  D. Mitchell,et al.  Microwave Imaging of Mercury's Thermal Emission at Wavelengths from 0.3 to 20.5 cm , 1994 .

[9]  Carle M. Pieters,et al.  Composition of the lunar highland crust from near‐infrared spectroscopy , 1986 .

[10]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[11]  J. B. Adams,et al.  Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing , 1978 .

[12]  Yves Langevin,et al.  The olivine at the lunar crater Copernicus as seen by Clementine NIR data , 2001 .

[13]  E. Fischer,et al.  THERMAL INFRARED SPECTRA OF LUNAR SOILS , 1997 .

[14]  Johan Warell,et al.  Properties of the Hermean regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling , 2004 .

[15]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[16]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[17]  R. Morris,et al.  Lunar Mare Soils: Space weathering and the major effects of surface‐correlated nanophase Fe , 2001 .

[18]  David K. Lynch,et al.  Mercury: Mid‐infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene , 2002 .

[19]  R. Clark,et al.  Planetary reflectance measurements in the region of planetary thermal emission , 1979 .

[20]  C. Pieters,et al.  Copernicus Crater Central Peak: Lunar Mountain of Unique Composition , 1982, Science.

[21]  A. Sprague,et al.  Mercury: Evidence for Anorthosite and Basalt from Mid-infrared (7.3-13.5 μm) Spectroscopy , 1994 .

[22]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[23]  Bonnie L. Cooper,et al.  Midinfrared spectra of Mercury , 2001 .

[24]  Bruce Hapke,et al.  An analysis of the Mariner 10 color ratio map of mercury , 1987 .

[25]  C. Allen,et al.  Microscopic Iron Metal on Glass and Minerals—A Tool for Studying Regolith Maturity , 1993 .

[26]  Sho Sasaki,et al.  Laboratory simulation of space weathering: Changes of optical properties and TEM/ESR confirmation of nanophase metallic iron , 2003 .

[27]  Carle M. Pieters,et al.  Origin of olivine at Copernicus , 1985 .

[28]  Bradley G. Henderson,et al.  Near‐surface thermal gradients and mid‐IR emission spectra: A new model including scattering and application to real data , 1995 .

[29]  S. Lord A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation , 1992 .

[30]  J. Warell,et al.  Properties of the hermean regolith: iii. disk-resolved vis-NIR reflectance spectra and implications for the abundance of iron* , 2003 .

[31]  P. Lucey Radiative transfer model constraints on the shock state of remotely sensed lunar anorthosites , 2002 .

[32]  R. Wäsch,et al.  Near-infrared reflectance spectroscopy of Ca-rich clinopyroxenes and prospects for remote spectral characterization of planetary surfaces , 2004 .

[33]  R. Clark,et al.  ATMOSPHERIC EXTINCTION 0.65 - 2.50 ΜM ABOVE MAUNA KEA. , 1979 .

[34]  Carle M. Pieters,et al.  Moon: near-infrared spectral reflectance, a first good look. , 1981 .

[35]  Ted L. Roush,et al.  Comparison of Laboratory Emission Spectra with Mercury Telescopic Data , 1998 .

[36]  Carle M. Pieters,et al.  Space Weathering on Mercury: Implications for Remote Sensing , 2003 .

[37]  Fred C. Witteborn,et al.  Mercury: Thermal Modeling and Mid-infrared (5–12 μm) Observations☆ , 1998 .

[38]  Properties of the hermean regolith. II. Disk-resolved multicolor photometry and color variations of the unknown hemisphere , 2002 .

[39]  J. Salisbury,et al.  Thermal‐infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements , 1993 .

[40]  Faith Vilas,et al.  Mercury: Absence of crystalline Fe2+ in the regolith , 1985 .

[41]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[42]  T V Johnson,et al.  Lunar Spectral Reflectivity (0.30 to 2.50 Microns) and Implications for Remote Mineralogical Analysis , 1970, Science.

[43]  Paul G. Lucey,et al.  A Comparison of Mercurian Reflectance and Spectral Quantities with Those of the Moon , 1997 .

[44]  B. Jakosky,et al.  Near‐surface thermal gradients and their effects on mid‐infrared emission spectra of planetary surfaces , 1994 .

[45]  Martin G. Cohen,et al.  Spectral Irradiance Calibration in the Infrared.VII.New Composite Spectra, Comparison with Model Atmospheres, and Far-Infrared Extrapolations , 1996 .

[46]  Faith Vilas,et al.  Surface composition of Mercury from reflectance spectrophotometry , 1988 .

[47]  C. Waelkens,et al.  ISO-SWS calibration and the accurate modelling of cool-star atmospheres ? IV. G9 to M2 stars ?? , 2002, astro-ph/0207636.

[48]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[49]  John W. Salisbury,et al.  Compositional Implications of Christiansen Frequency Maximums for Infrared Remote Sensing Applications , 1973 .

[50]  Mark J. Cintala,et al.  Impact‐induced thermal effects in the lunar and Mercurian regoliths , 1992 .

[51]  S. T. Megeath,et al.  Spectral Irradiance Calibration in the Infrared. XIII. “Supertemplates” and On-Orbit Calibrators for the SIRTF Infrared Array Camera , 2003, astro-ph/0304349.

[52]  Roger N. Clark,et al.  The Mercury soil: Presence of Fe2+ , 1979 .

[53]  Patrick Martin,et al.  Copernicus: A Regional Probe of the Lunar Interior , 1993, Science.