Functional characterization of BRCC3 mutations in acute myeloid leukemia with t(8;21)(q22;q22.1)

[1]  R. Greenberg,et al.  The BRISC deubiquitinating enzyme complex limits hematopoietic stem cell expansion by regulating JAK2 K63-ubiquitination. , 2019, Blood.

[2]  L. Bullinger,et al.  Genomic landscape and clonal evolution of acute myeloid leukemia with t(8;21): an international study on 331 patients. , 2019, Blood.

[3]  A. McCallion,et al.  Survey of Human Chromosome 21 Gene Expression Effects on Early Development in Danio rerio , 2018, G3: Genes, Genomes, Genetics.

[4]  Tamara J. Blätte,et al.  Genetic Heterogeneity of t(8;21)(q22;q22.1) Acute Myeloid Leukemia Revealed By High-Throughput Targeted Sequencing , 2017 .

[5]  L. Bullinger,et al.  Incidence and prognostic impact of ASXL2 mutations in adult acute myeloid leukemia patients with t(8;21)(q22;q22): a study of the German-Austrian AML Study Group , 2017, Leukemia.

[6]  Heather L. Mulder,et al.  The genomic landscape of core-binding factor acute myeloid leukemias , 2016, Nature Genetics.

[7]  Huifang Huang,et al.  Hepatocyte growth factor promotes proliferation, invasion, and metastasis of myeloid leukemia cells through PI3K-AKT and MAPK/ERK signaling pathway. , 2016, American journal of translational research.

[8]  W. Weichert,et al.  RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells. , 2016, Cancer cell.

[9]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[10]  O. Abdel-Wahab,et al.  Comprehensive mutational profiling of core binding factor acute myeloid leukemia. , 2016, Blood.

[11]  Ole Winther,et al.  BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis , 2015, Nucleic Acids Res..

[12]  H. Aburatani,et al.  BRCC3 mutations in myeloid neoplasms , 2015, Haematologica.

[13]  F. Kirchhoff,et al.  Sandwich enzyme-linked immunosorbent assay for the quantification of human serum albumin fragment 408-423 in bodily fluids. , 2015, Analytical biochemistry.

[14]  Chung S. Yang,et al.  Downregulation of BRCA1-BRCA2-containing complex subunit 3 sensitizes glioma cells to temozolomide , 2014, Oncotarget.

[15]  Robert Langer,et al.  CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling , 2014, Cell.

[16]  O. Abdel-Wahab,et al.  Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. , 2014, Blood.

[17]  Aviv Regev,et al.  Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing , 2014, Nature Biotechnology.

[18]  Ming Yan,et al.  RUNX1–ETO induces a type I interferon response which negatively effects t(8;21)-induced increased self-renewal and leukemia development , 2014, Leukemia & lymphoma.

[19]  R. Greenberg,et al.  A BRISC-SHMT complex deubiquitinates IFNAR1 and regulates interferon responses. , 2013, Cell reports.

[20]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[21]  Junying Yuan,et al.  Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. , 2013, Molecular cell.

[22]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[23]  Andrew L. Kung,et al.  Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia , 2012, Nature Medicine.

[24]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[25]  J. Downing,et al.  High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations. , 2010, Blood.

[26]  R. Greenberg,et al.  Differential Regulation of JAMM Domain Deubiquitinating Enzyme Activity within the RAP80 Complex* , 2010, The Journal of Biological Chemistry.

[27]  Junjie Chen,et al.  The Lys63-specific Deubiquitinating Enzyme BRCC36 Is Regulated by Two Scaffold Proteins Localizing in Different Subcellular Compartments* , 2010, The Journal of Biological Chemistry.

[28]  J. Boeke,et al.  Specificity of the BRISC Deubiquitinating Enzyme Is Not Due to Selective Binding to Lys63-linked Polyubiquitin* , 2009, The Journal of Biological Chemistry.

[29]  Troels Z. Kristiansen,et al.  K63‐specific deubiquitination by two JAMM/MPN+ complexes: BRISC‐associated Brcc36 and proteasomal Poh1 , 2009, The EMBO journal.

[30]  R. Greenberg,et al.  MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. , 2009, Genes & development.

[31]  R. Greenberg,et al.  The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks , 2009, Proceedings of the National Academy of Sciences.

[32]  H. Mitsuya,et al.  A JAK2-V617F activating mutation in addition to KIT and FLT3 mutations is associated with clinical outcome in patients with t(8;21)(q22;q22) acute myeloid leukemia , 2009, Haematologica.

[33]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[34]  C. Preudhomme,et al.  Cooperating gene mutations in acute myeloid leukemia: a review of the literature , 2008, Leukemia.

[35]  Laurence Pelletier,et al.  Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase , 2007, Science.

[36]  Aedín C Culhane,et al.  RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites , 2007, Science.

[37]  Junjie Chen,et al.  Ubiquitin-Binding Protein RAP80 Mediates BRCA1-Dependent DNA Damage Response , 2007, Science.

[38]  Xiaowei Chen,et al.  BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation and nuclear foci formation. , 2006, Cancer research.

[39]  K. Döhner,et al.  Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[40]  R. Shiekhattar,et al.  Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. , 2003, Molecular cell.

[41]  J. Downing The core-binding factor leukemias: lessons learned from murine models. , 2003, Current opinion in genetics & development.

[42]  L. Aravind,et al.  Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1 , 2002, Science.

[43]  D. Gilliland,et al.  Core-binding factors in haematopoiesis and leukaemia , 2002, Nature Reviews Cancer.

[44]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[45]  E. Vellenga,et al.  Co‐expression of CD30 ligand and interleukin 4 (IL‐4) receptors by acute myeloid leukaemia blasts is associated with the expansion of IL‐4‐producing CD30+ normal T cells , 2002, British journal of haematology.

[46]  N. Kamada,et al.  AML1-MTG8 leukemic protein induces the expression of granulocyte colony-stimulating factor (G-CSF) receptor through the up-regulation of CCAAT/enhancer binding protein epsilon. , 2000, Blood.

[47]  H. Iwasaki,et al.  G-CSF induces tyrosine phosphorylation of the JAK2 protein in the human myeloid G-CSF responsive and proliferative cells, but not in mature neutrophils. , 1994, Biochemical and biophysical research communications.

[48]  M. Ohki,et al.  t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Masahiko Watanabe,et al.  Granulocyte colony‐stimulating factor (G‐CSF) receptors on acute myeloblasts leukaemia cells and their relationship with the proliferative response to G‐CSF in clonogenic assay , 1991, British journal of haematology.

[50]  O. Garson,et al.  Translocation (8;21)(q22;q22) in Acute Nonlymphocytic Leukemia , 1984 .

[51]  Daniel J Weisdorf,et al.  Acute Myeloid Leukemia. , 2015, The New England journal of medicine.

[52]  F. Passamonti,et al.  A JAK 2V 617 F activating mutation in addition to KIT and FLT 3 mutations is associated with clinical outcome in patients with t ( 8 ; 21 ) ( q 22 ; q 22 ) acute myeloid leukemia , 2009 .

[53]  H. Kantarjian,et al.  Acute myeloid leukemia , 2018, Methods in Molecular Biology.