Weak Approximation Properties of Elliptic Projections with Functional Constraints

This paper is on the construction of energy-minimizing coarse spaces that obey certain functional constraints and can thus be used, for example, to build robust coarse spaces for elliptic problems with large variations in the coefficients. In practice they are built by patching together solutions to appropriate local saddle point or eigenvalue problems. We develop an abstract framework for such constructions, akin to an abstract Bramble–Hilbert-type lemma, and then apply it in the design of coarse spaces for discretizations of PDEs with highly varying coefficients. The stability and approximation bounds of the constructed interpolant are in the weighted L2 norm and are independent of the variations in the coefficients. Such spaces can be used, for example, in two-level overlapping Schwarz algorithms for elliptic PDEs with large coefficient jumps generally not resolved by a standard coarse grid or for numerical upscaling purposes. Some numerical illustration is provided.

[1]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[2]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[3]  Ludmil Zikatanov,et al.  Energy Minimizing Bases for Efficient Multiscale Modeling and Linear Solvers in Reservoir Simulation , 2009 .

[4]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[5]  Panayot S. Vassilevski,et al.  General Constrained Energy Minimization Interpolation Mappings for AMG , 2010, SIAM J. Sci. Comput..

[6]  Robert Scheichl,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré Inequalities and Applications in Domain Decomposition , 2009 .

[7]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[8]  P. Vassilevski Hybrid V-cycle algebraic multilevel preconditioners , 1992 .

[9]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[10]  Ian G. Graham,et al.  Unstructured Additive Schwarz-Conjugate Gradient Method for Elliptic Problems with Highly Discontinuous Coefficients , 1999, SIAM J. Sci. Comput..

[11]  Eero Vainikko,et al.  Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients , 2007, Computing.

[12]  O. Widlund Domain Decomposition Algorithms , 1993 .

[13]  Ivan G. Graham,et al.  Energy Minimizing Coarse Spaces for Two-level Schwarz Methods for Multiscale Pdes , 2008 .

[14]  Jinchao Xu,et al.  On an energy minimizing basis for algebraic multigrid methods , 2004 .

[15]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[16]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[17]  J. Mandel,et al.  An Iterative Method with Convergence Rate Chosen a priori , 1999 .

[18]  Panayot S. Vassilevski,et al.  H(curl) auxiliary mesh preconditioning , 2008, Numer. Linear Algebra Appl..

[19]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[20]  Ricardo G. Durán,et al.  An optimal Poincare inequality in L^1 for convex domains , 2003 .

[21]  Ludmil T. Zikatanov,et al.  Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids , 2012, SIAM J. Numer. Anal..

[22]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[23]  Yalchin Efendiev,et al.  Spectral Element Agglomerate Algebraic Multigrid Methods for Elliptic Problems with High-Contrast Coefficients , 2011 .

[24]  Jinchao Xu,et al.  UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .

[25]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[26]  Robert Scheichl,et al.  Weighted Poincaré inequalities , 2013 .

[27]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[28]  F. Lin,et al.  Geometric Measure Theory: An Introduction , 2010 .

[29]  Yunrong Zhu,et al.  Domain decomposition preconditioners for elliptic equations with jump coefficients , 2008, Numer. Linear Algebra Appl..

[30]  Olof B. Widlund,et al.  An Overlapping Schwarz Algorithm for Almost Incompressible Elasticity , 2009, SIAM J. Numer. Anal..

[31]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[32]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[33]  Numerische Mathematik,et al.  Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements , 1997 .

[34]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.