Nested Deduction in Logical Foundations for Computation
暂无分享,去创建一个
[1] Lutz Straßburger,et al. A system of interaction and structure IV: The exponentials and decomposition , 2009, TOCL.
[2] M. Sørensen,et al. Lectures on the Curry-Howard Isomorphism , 2013 .
[3] Alessio Guglielmi,et al. A Calculus of Order and Interaction , 1999 .
[4] Emmanuel Polonovski. Subsitutions explicites, logique et normalisation , 2004 .
[5] John McCarthy,et al. Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.
[6] Samuel R. Buss,et al. The Undecidability of k-Provability , 1991, Ann. Pure Appl. Log..
[7] Carsten Schürmann,et al. Focused Natural Deduction , 2010, LPAR.
[8] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[9] Yves Lafont,et al. Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..
[10] Delia Kesner,et al. The Theory of Calculi with Explicit Substitutions Revisited , 2007, CSL.
[11] Peter Schroeder-Heister,et al. Implications-as-Rules vs. Implications-as-Links: An Alternative Implication-Left Schema for the Sequent Calculus , 2011, J. Philos. Log..
[12] Hugo Herbelin,et al. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.
[13] Richard McKinley,et al. An Algorithmic Interpretation of a Deep Inference System , 2008, LPAR.
[14] Delia Kesner,et al. Resource operators for lambda-calculus , 2007, Inf. Comput..
[15] Dale Miller,et al. Canonical Sequent Proofs via Multi-Focusing , 2008, IFIP TCS.
[16] Jean-Yves Girard,et al. A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.
[17] Hendrik Pieter Barendregt,et al. Lambda terms for natural deduction, sequent calculus and cut elimination , 2000, J. Funct. Program..
[18] Dale Miller,et al. A Proof Search Specification of the pi-Calculus , 2005, FGUC.
[19] Samson Abramsky,et al. Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..
[20] Pierre Lescanne,et al. From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.
[21] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[22] Delia Kesner,et al. A prismoid framework for languages with resources , 2011, Theor. Comput. Sci..
[23] Luca Viganò,et al. Labelled non-classical logics , 2000 .
[24] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[25] Ian Mackie,et al. Lambda-Calculus with Director Strings , 2005, Applicable Algebra in Engineering, Communication and Computing.
[26] Lutz Straßburger,et al. A system of interaction and structure V: the exponentials and splitting , 2011, Math. Struct. Comput. Sci..
[27] Peter Claussen. Theories of programming languages , 2000, SOEN.
[28] Saul A. Kripke,et al. Semantical Analysis of Intuitionistic Logic I , 1965 .
[29] Andrea Asperti. Optimal Reduction of Functional Expressions , 1998, PLILP/ALP.
[30] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[31] Nuel Belnap,et al. Gupta's rule of revision theory of truth , 1982, J. Philos. Log..
[32] David N. Yetter,et al. Quantales and (noncommutative) linear logic , 1990, Journal of Symbolic Logic.
[33] Sara Negri,et al. Structural proof theory , 2001 .
[34] Delia Kesner,et al. The structural λ-calculus , 2010 .
[35] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[36] Davide Sangiorgi,et al. Communicating and Mobile Systems: the π-calculus, , 2000 .
[37] Ryo Kashima,et al. Cut-free sequent calculi for some tense logics , 1994, Stud Logica.
[38] Nicolas Tabareau,et al. Resource modalities in tensor logic , 2010, Ann. Pure Appl. Log..
[39] Eugenio Moggi,et al. Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[40] Delia Kesner,et al. Resource operators for λ-calculus , 2007 .
[41] Kai Brünnler. Deep Inference and Its Normal Form of Derivations , 2006, CiE.
[42] Olivier Laurent,et al. Étude de la polarisation en logique , 2001 .
[43] Tobias Nipkow,et al. Term rewriting and all that , 1998 .
[44] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[45] Gianluigi Bellin,et al. On the pi-Calculus and Linear Logic , 1992, Theor. Comput. Sci..
[46] Alwen Tiu,et al. A System of Interaction and Structure II: The Need for Deep Inference , 2005, Log. Methods Comput. Sci..
[47] Kai Brünnler. Cut Elimination inside a Deep Inference System for Classical Predicate Logic , 2006, Stud Logica.
[48] Haskell B. Curry,et al. The permutability of rules in the classical inferential calculus , 1952, Journal of Symbolic Logic.
[49] de Ng Dick Bruijn,et al. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[50] Roy Dyckhoff,et al. Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.
[51] Alwen Tiu,et al. A Local System for Intuitionistic Logic , 2006, LPAR.
[52] Kai Brünnler. Locality for Classical Logic , 2006, Notre Dame J. Formal Log..
[53] L. M. Milne-Thomson,et al. Grundlagen der Mathematik , 1935, Nature.
[54] Ozan Kahramanogullari. Nondeterminism and language design in deep inference , 2007 .
[55] P. Bernays,et al. Grundlagen der Mathematik , 1934 .
[56] A. Church,et al. Some properties of conversion , 1936 .
[57] Sandra Alves,et al. Weak linearization of the lambda calculus , 2005, Theor. Comput. Sci..
[58] Paola Bruscoli. A Purely Logical Account of Sequentiality in Proof Search , 2002, ICLP.
[59] Stephen Cole Kleene,et al. On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.
[60] Lutz Straßburger,et al. MELL in the calculus of structures , 2003, Theor. Comput. Sci..
[61] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.
[62] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[63] Luís Pinto,et al. Permutability of Proofs in Intuitionistic Sequent Calculi , 1999, Theor. Comput. Sci..
[64] Chuck Liang,et al. Focusing and polarization in linear, intuitionistic, and classical logics , 2009, Theor. Comput. Sci..
[65] Lutz Straßburger,et al. Breaking Paths in Atomic Flows for Classical Logic , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.
[66] Alessio Guglielmi,et al. A linear logic view of gamma style computations as proof searches , 1996 .
[67] Dale Miller,et al. From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic , 2007, CSL.
[68] H. Reichel,et al. Deep Inference and Symmetry in Classical Proofs , 2003 .
[69] David J. Pym,et al. The semantics and proof theory of the logic of bunched implications , 2002, Applied logic series.
[70] M. Newman. On Theories with a Combinatorial Definition of "Equivalence" , 1942 .
[71] Nachum Dershowitz. Orderings for Term-Rewriting Systems , 1979, FOCS.
[72] Delia Kesner,et al. Extending the Explicit Substitution Paradigm , 2005, RTA.
[73] Gopalan Nadathur,et al. Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..
[74] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[75] José Espírito Santo,et al. The λ-Calculus and the Unity of Structural Proof Theory , 2009, Theory of Computing Systems.
[76] Jean Gallier,et al. Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..
[77] Alessio Guglielmi,et al. A Tutorial on Proof Theoretic Foundations of Logic Programming , 2003, ICLP.
[78] Lev Gordeev,et al. Basic proof theory , 1998 .
[79] Dominic J. D. Hughes. A classical sequent calculus free of structural rules , 2005 .
[80] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[81] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[82] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[83] Dale Miller,et al. Focusing and Polarization in Intuitionistic Logic , 2007, CSL.
[84] Lutz Straßburger,et al. Linear logic and noncommutativity in the calculus of structures , 2003 .
[85] José Espírito Santo. The λ-Calculus and the Unity of Structural Proof Theory , 2009 .
[86] Jean-Yves Girard,et al. Light Linear Logic , 1998, Inf. Comput..
[87] Dale Miller,et al. Logic Programming in a Fragment of Intuitionistic Linear Logic , 1994, Inf. Comput..
[88] Richard Kennaway,et al. Director strings as combinators , 1988, TOPL.
[89] J. Girard. PROOF-NETS : THE PARALLEL SYNTAX FOR PROOF-THEORY , 1996 .
[90] Lutz Straßburger,et al. A Characterisation of Medial as Rewriting Rule , 2007 .
[91] Ralph Matthes,et al. Standardization and Confluence for a Lambda Calculus with Generalized Applications , 2000, RTA.
[92] Lutz Straßburger,et al. A Non-commutative Extension of MELL , 2002, LPAR.
[93] Fabien Renaud,et al. Les ressources explicites vues par la théorie de la réécriture. (Explicit resources from the rewriting point of view) , 2011 .
[94] Pierre-Louis Curien,et al. A semantics for lambda calculi with resources , 1999, Mathematical Structures in Computer Science.
[95] Alessio Guglielmi,et al. A system of interaction and structure , 1999, TOCL.
[96] Laurent Regnier,et al. The differential lambda-calculus , 2003, Theor. Comput. Sci..
[97] Dominic J. D. Hughes. A minimal classical sequent calculus free of structural rules , 2010, Ann. Pure Appl. Log..
[98] Davide Sangiorgi,et al. From -calculus to Higher-order -calculus | and Back , 2007 .
[99] Nachum Dershowitz,et al. Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[100] J. Girard,et al. Proofs and types , 1989 .
[101] C. J. Bloo,et al. Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .
[102] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[103] Tom Gundersen,et al. A Proof Calculus Which Reduces Syntactic Bureaucracy , 2010, RTA.
[104] Delia Kesner,et al. First-class patterns , 2009, Journal of Functional Programming.
[105] M. Sørensen,et al. Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics) , 2006 .
[106] R. B. Abhyankar,et al. Computing with Logic : Logic Programming with Prolog , 2001 .
[107] Paul Ruet,et al. Non-Commutative Logic I: The Multiplicative Fragment , 1999, Ann. Pure Appl. Log..
[108] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[109] Benjamin C. Pierce,et al. Local type inference , 1998, POPL '98.
[110] Christian Retoré,et al. Pomset Logic: A Non-commutative Extension of Classical Linear Logic , 1997, TLCA.
[111] Luca Roversi. Linear Lambda Calculus and Deep Inference , 2011, TLCA.
[112] Kaustuv Chaudhuri. Focusing Strategies in the Sequent Calculus of Synthetic Connectives , 2008, LPAR.