Nested Deduction in Logical Foundations for Computation

This thesis investigates the use of deep inference formalisms as basis for a computational interpretation of proof systems, following the two main approaches: proofs-as-programs and proof-search-as-computation. The first contribution is the development of a family of proof systems for intuitionistic logic in the calculus of structures and in nested sequents, for which internal normalisation procedures are given. One of these procedure is then interpreted in terms of computation, as a refinement of the Curry-Howard correspondence allowing to introduce a form of sharing and communication operators in a lambda-calculus with explicit substitution. On the side of proof-search, the notion of focused proof in linear logic is transferred from the sequent calculus into the calculus of structures, where it yields an incremental form of focusing, with a simple proof of completeness. Finally, another interpretation of proof-search is given through the encoding of reduction in a lambda-calculus with explicit substitution into the inference rules of a subsystem of intuitionistic logic in the calculus of structures.

[1]  Lutz Straßburger,et al.  A system of interaction and structure IV: The exponentials and decomposition , 2009, TOCL.

[2]  M. Sørensen,et al.  Lectures on the Curry-Howard Isomorphism , 2013 .

[3]  Alessio Guglielmi,et al.  A Calculus of Order and Interaction , 1999 .

[4]  Emmanuel Polonovski Subsitutions explicites, logique et normalisation , 2004 .

[5]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.

[6]  Samuel R. Buss,et al.  The Undecidability of k-Provability , 1991, Ann. Pure Appl. Log..

[7]  Carsten Schürmann,et al.  Focused Natural Deduction , 2010, LPAR.

[8]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[9]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[10]  Delia Kesner,et al.  The Theory of Calculi with Explicit Substitutions Revisited , 2007, CSL.

[11]  Peter Schroeder-Heister,et al.  Implications-as-Rules vs. Implications-as-Links: An Alternative Implication-Left Schema for the Sequent Calculus , 2011, J. Philos. Log..

[12]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.

[13]  Richard McKinley,et al.  An Algorithmic Interpretation of a Deep Inference System , 2008, LPAR.

[14]  Delia Kesner,et al.  Resource operators for lambda-calculus , 2007, Inf. Comput..

[15]  Dale Miller,et al.  Canonical Sequent Proofs via Multi-Focusing , 2008, IFIP TCS.

[16]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[17]  Hendrik Pieter Barendregt,et al.  Lambda terms for natural deduction, sequent calculus and cut elimination , 2000, J. Funct. Program..

[18]  Dale Miller,et al.  A Proof Search Specification of the pi-Calculus , 2005, FGUC.

[19]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[20]  Pierre Lescanne,et al.  From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.

[21]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[22]  Delia Kesner,et al.  A prismoid framework for languages with resources , 2011, Theor. Comput. Sci..

[23]  Luca Viganò,et al.  Labelled non-classical logics , 2000 .

[24]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[25]  Ian Mackie,et al.  Lambda-Calculus with Director Strings , 2005, Applicable Algebra in Engineering, Communication and Computing.

[26]  Lutz Straßburger,et al.  A system of interaction and structure V: the exponentials and splitting , 2011, Math. Struct. Comput. Sci..

[27]  Peter Claussen Theories of programming languages , 2000, SOEN.

[28]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[29]  Andrea Asperti Optimal Reduction of Functional Expressions , 1998, PLILP/ALP.

[30]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[31]  Nuel Belnap,et al.  Gupta's rule of revision theory of truth , 1982, J. Philos. Log..

[32]  David N. Yetter,et al.  Quantales and (noncommutative) linear logic , 1990, Journal of Symbolic Logic.

[33]  Sara Negri,et al.  Structural proof theory , 2001 .

[34]  Delia Kesner,et al.  The structural λ-calculus , 2010 .

[35]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[36]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[37]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.

[38]  Nicolas Tabareau,et al.  Resource modalities in tensor logic , 2010, Ann. Pure Appl. Log..

[39]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[40]  Delia Kesner,et al.  Resource operators for λ-calculus , 2007 .

[41]  Kai Brünnler Deep Inference and Its Normal Form of Derivations , 2006, CiE.

[42]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[43]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[44]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[45]  Gianluigi Bellin,et al.  On the pi-Calculus and Linear Logic , 1992, Theor. Comput. Sci..

[46]  Alwen Tiu,et al.  A System of Interaction and Structure II: The Need for Deep Inference , 2005, Log. Methods Comput. Sci..

[47]  Kai Brünnler Cut Elimination inside a Deep Inference System for Classical Predicate Logic , 2006, Stud Logica.

[48]  Haskell B. Curry,et al.  The permutability of rules in the classical inferential calculus , 1952, Journal of Symbolic Logic.

[49]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[50]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[51]  Alwen Tiu,et al.  A Local System for Intuitionistic Logic , 2006, LPAR.

[52]  Kai Brünnler Locality for Classical Logic , 2006, Notre Dame J. Formal Log..

[53]  L. M. Milne-Thomson,et al.  Grundlagen der Mathematik , 1935, Nature.

[54]  Ozan Kahramanogullari Nondeterminism and language design in deep inference , 2007 .

[55]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[56]  A. Church,et al.  Some properties of conversion , 1936 .

[57]  Sandra Alves,et al.  Weak linearization of the lambda calculus , 2005, Theor. Comput. Sci..

[58]  Paola Bruscoli A Purely Logical Account of Sequentiality in Proof Search , 2002, ICLP.

[59]  Stephen Cole Kleene,et al.  On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.

[60]  Lutz Straßburger,et al.  MELL in the calculus of structures , 2003, Theor. Comput. Sci..

[61]  Paul-André Melliès Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.

[62]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[63]  Luís Pinto,et al.  Permutability of Proofs in Intuitionistic Sequent Calculi , 1999, Theor. Comput. Sci..

[64]  Chuck Liang,et al.  Focusing and polarization in linear, intuitionistic, and classical logics , 2009, Theor. Comput. Sci..

[65]  Lutz Straßburger,et al.  Breaking Paths in Atomic Flows for Classical Logic , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[66]  Alessio Guglielmi,et al.  A linear logic view of gamma style computations as proof searches , 1996 .

[67]  Dale Miller,et al.  From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic , 2007, CSL.

[68]  H. Reichel,et al.  Deep Inference and Symmetry in Classical Proofs , 2003 .

[69]  David J. Pym,et al.  The semantics and proof theory of the logic of bunched implications , 2002, Applied logic series.

[70]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[71]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[72]  Delia Kesner,et al.  Extending the Explicit Substitution Paradigm , 2005, RTA.

[73]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[74]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[75]  José Espírito Santo,et al.  The λ-Calculus and the Unity of Structural Proof Theory , 2009, Theory of Computing Systems.

[76]  Jean Gallier,et al.  Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..

[77]  Alessio Guglielmi,et al.  A Tutorial on Proof Theoretic Foundations of Logic Programming , 2003, ICLP.

[78]  Lev Gordeev,et al.  Basic proof theory , 1998 .

[79]  Dominic J. D. Hughes A classical sequent calculus free of structural rules , 2005 .

[80]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[81]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[82]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[83]  Dale Miller,et al.  Focusing and Polarization in Intuitionistic Logic , 2007, CSL.

[84]  Lutz Straßburger,et al.  Linear logic and noncommutativity in the calculus of structures , 2003 .

[85]  José Espírito Santo The λ-Calculus and the Unity of Structural Proof Theory , 2009 .

[86]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[87]  Dale Miller,et al.  Logic Programming in a Fragment of Intuitionistic Linear Logic , 1994, Inf. Comput..

[88]  Richard Kennaway,et al.  Director strings as combinators , 1988, TOPL.

[89]  J. Girard PROOF-NETS : THE PARALLEL SYNTAX FOR PROOF-THEORY , 1996 .

[90]  Lutz Straßburger,et al.  A Characterisation of Medial as Rewriting Rule , 2007 .

[91]  Ralph Matthes,et al.  Standardization and Confluence for a Lambda Calculus with Generalized Applications , 2000, RTA.

[92]  Lutz Straßburger,et al.  A Non-commutative Extension of MELL , 2002, LPAR.

[93]  Fabien Renaud,et al.  Les ressources explicites vues par la théorie de la réécriture. (Explicit resources from the rewriting point of view) , 2011 .

[94]  Pierre-Louis Curien,et al.  A semantics for lambda calculi with resources , 1999, Mathematical Structures in Computer Science.

[95]  Alessio Guglielmi,et al.  A system of interaction and structure , 1999, TOCL.

[96]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[97]  Dominic J. D. Hughes A minimal classical sequent calculus free of structural rules , 2010, Ann. Pure Appl. Log..

[98]  Davide Sangiorgi,et al.  From -calculus to Higher-order -calculus | and Back , 2007 .

[99]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[100]  J. Girard,et al.  Proofs and types , 1989 .

[101]  C. J. Bloo,et al.  Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .

[102]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[103]  Tom Gundersen,et al.  A Proof Calculus Which Reduces Syntactic Bureaucracy , 2010, RTA.

[104]  Delia Kesner,et al.  First-class patterns , 2009, Journal of Functional Programming.

[105]  M. Sørensen,et al.  Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics) , 2006 .

[106]  R. B. Abhyankar,et al.  Computing with Logic : Logic Programming with Prolog , 2001 .

[107]  Paul Ruet,et al.  Non-Commutative Logic I: The Multiplicative Fragment , 1999, Ann. Pure Appl. Log..

[108]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[109]  Benjamin C. Pierce,et al.  Local type inference , 1998, POPL '98.

[110]  Christian Retoré,et al.  Pomset Logic: A Non-commutative Extension of Classical Linear Logic , 1997, TLCA.

[111]  Luca Roversi Linear Lambda Calculus and Deep Inference , 2011, TLCA.

[112]  Kaustuv Chaudhuri Focusing Strategies in the Sequent Calculus of Synthetic Connectives , 2008, LPAR.