Boosting Object Proposals: From Pascal to COCO

Computer vision in general, and object proposals in particular, are nowadays strongly influenced by the databases on which researchers evaluate the performance of their algorithms. This paper studies the transition from the Pascal Visual Object Challenge dataset, which has been the benchmark of reference for the last years, to the updated, bigger, and more challenging Microsoft Common Objects in Context. We first review and deeply analyze the new challenges, and opportunities, that this database presents. We then survey the current state of the art in object proposals and evaluate it focusing on how it generalizes to the new dataset. In sight of these results, we propose various lines of research to take advantage of the new benchmark and improve the techniques. We explore one of these lines, which leads to an improvement over the state of the art of +5.2%.

[1]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Subhransu Maji,et al.  Semantic contours from inverse detectors , 2011, 2011 International Conference on Computer Vision.

[3]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[4]  Derek Hoiem,et al.  Category-Independent Object Proposals with Diverse Ranking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Luc Van Gool,et al.  SEEDS: Superpixels Extracted Via Energy-Driven Sampling , 2012, International Journal of Computer Vision.

[7]  Thomas Deselaers,et al.  What is an object? , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  James M. Rehg,et al.  RIGOR: Reusing Inference in Graph Cuts for Generating Object Regions , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Santiago Manen,et al.  Prime Object Proposals with Randomized Prim's Algorithm , 2013, 2013 IEEE International Conference on Computer Vision.

[10]  Jitendra Malik,et al.  Semantic segmentation using regions and parts , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Esa Rahtu,et al.  Generating Object Segmentation Proposals Using Global and Local Search , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Cristian Sminchisescu,et al.  Constrained parametric min-cuts for automatic object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Vladlen Koltun,et al.  Geodesic Object Proposals , 2014, ECCV.

[14]  Kristen Grauman,et al.  Shape Sharing for Object Segmentation , 2012, ECCV.

[15]  Bernt Schiele,et al.  What Makes for Effective Detection Proposals? , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  C. Lawrence Zitnick,et al.  Structured Forests for Fast Edge Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[17]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Derek Hoiem,et al.  Category Independent Object Proposals , 2010, ECCV.

[19]  Derek Hoiem,et al.  Diagnosing Error in Object Detectors , 2012, ECCV.

[20]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2014, Computational Visual Media.

[21]  Joseph J. Lim,et al.  Sketch Tokens: A Learned Mid-level Representation for Contour and Object Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[23]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[24]  Cristian Sminchisescu,et al.  CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[26]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[27]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[28]  ZissermanAndrew,et al.  The Pascal Visual Object Classes Challenge , 2015 .

[29]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[30]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.