Multimegawatt DAE$\delta$ALUS Cyclotrons for Neutrino Physics

DAE ALUS (Decay-At-rest Experiment for CP studies At the Laboratory for Underground Science) provides a new approach to the search for CP violation in the neutrino sector. High-power continuous-wave proton cyclotrons eciently provide the necessary proton beams with an energy of up to 800 MeV to create neutrinos from pion and muon decay-at-rest. The experiment searches for ! e at short baselines corresponding to the atmospheric m 2 region. The e will be detected via inverse beta decay. Thus, the cyclotrons will be employed at a future ultra-large gadolinium-doped water or scintillator detector. In this paper we address the most challenging questions regarding a cyclotron-based high-power proton driver in the megawatt range with a kinetic energy of 800 MeV. Aspects of important subsystems like the ion source and injection chain, the magnet design and radio frequency system will be addressed. Precise beam dynamics simulations, including space charge and the H + stripping process, are the base for the characterization and quantication of the beam halo{one of the most limiting processes in high-power particle accelerators.

[1]  Arcadi Santamaria,et al.  Present and future bounds on non-standard neutrino interactions , 2003, hep-ph/0302093.

[2]  D. Barnia,et al.  STATUS OF THE HIGH CURRENT PROTON ACCELERATOR FOR THE TRASCO PROGRAM , 2002 .

[3]  G. Andler,et al.  CRYRING — a synchrotron, cooler and storage ring , 1993 .

[4]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[5]  J. Beacom,et al.  Angular distribution of neutron inverse beta decay , n̄ , 1999 .

[6]  E. Forton,et al.  Recent development and progress of IBA cyclotrons , 2011 .

[7]  R. Veness,et al.  Vacuum stability for ion induced gas desorption , 1999 .

[8]  J. J. Yang,et al.  Proposal for an electron antineutrino disappearance search using high-rate 8Li production and decay. , 2012, Physical review letters.

[9]  J. J. Yang,et al.  Beam dynamics simulation for the high intensity DAEδALUS cyclotrons , 2012, 1209.5864.

[10]  Sandy S. C. Law Neutrino Models and Leptogenesis , 2009, 0901.1232.

[11]  J. Conrad,et al.  Short-baseline neutrino oscillation waves in ultra-large liquid scintillator detectors , 2011, 1105.4984.

[12]  C. Feigerle,et al.  SNS stripper foil development program , 2008 .

[13]  Y. Kadi,et al.  Beam cooling with ionization losses , 2006, hep-ph/0602032.

[14]  H. Wiedemann Particle accelerator physics , 1993 .

[15]  C. Rubbia,et al.  A cyclotron-based accelerator for driving the Energy Amplifier , 1995 .

[16]  Fang Yang,et al.  The cyclotron development activities at CIAE , 2011 .

[17]  Alessandra Tonazzo,et al.  The next-generation liquid-scintillator neutrino observatory LENA , 2011, 1104.5620.

[18]  Andreas Adelmann,et al.  PRODUCTION OF A 1.3 MW PROTON BEAM AT PSI , 2010 .

[19]  G. Karagiorgi,et al.  Expression of Interest for a Novel Search for CP Violation in the Neutrino Sector: DAEdALUS , 2010, 1006.0260.

[20]  J. Mitchell,et al.  Production of low-vibrational-state H2+ ions for collision studies , 1987 .

[21]  A. Adelmann,et al.  Towards quantitative simulations of high power proton cyclotrons , 2010, 1012.0718.

[22]  M. Droba,et al.  Characterization of volume type ion source for p, H2+ and H3+ beams , 2009, 1606.05869.

[23]  A. Anderson,et al.  Coherent Neutrino Scattering in Dark Matter Detectors , 2011, 1103.4894.

[24]  A. McInturff,et al.  Accelerator-Driven Thorium Cycle: New Technology Makes It Feasible , 2002 .

[25]  A. Adelmann,et al.  Conceptual design of an 800 MeV high power proton driver , 2011 .

[26]  T. Koi,et al.  Geant 4 Developments and Applications , 2013 .

[27]  W. Joho,et al.  Studies on extraction efficiency and energy spread for the sin ring cyclotron , 1970 .

[28]  A. Anderson,et al.  Measuring active-to-sterile neutrino oscillations with neutral current coherent neutrino-nucleus scattering , 2012, 1201.3805.

[29]  V. Taivassalo,et al.  The Z4 orbit code and the focusing bar fields used calculations for superconducting cyclotrons , 1986 .

[30]  A. Adelmann,et al.  High performance computation on beam dynamics problems in high intensity compact cyclotrons , 2011 .

[31]  G. Gallo,et al.  STATUS OF THE VERSATILE ION SOURCE VIS * , 2008 .

[32]  C. Bromberg,et al.  Report of the US long baseline neutrino experiment study , 2007, 0705.4396.

[33]  E. Mahner Review of heavy-ion induced desorption studies for particle accelerators , 2008 .

[34]  G. Kim,et al.  A superconducting isochronous cyclotron stack as a driver for a thorium-cycle power reactor , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).

[35]  L. Calabretta,et al.  Preliminary study on a Multi Megawatt Cyclotron Complex to Search for CP Violation in the Neutrino Sector , 2010, 1010.1493.

[36]  M. Larsson,et al.  Dissociative recombination of H2+ studied in CRYRING , 1995 .

[37]  A. Adelmann,et al.  Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation, and application , 2010, 1003.0326.

[38]  D. Burns,et al.  Testing of a H2+‐enriched ion source for deuterium simulation , 1990 .

[39]  M. Maggiore,et al.  A Superconducting Ring Cyclotron to Deliver High Intensity Proton Beams , 2000 .

[40]  Carlo Rubbia,et al.  Conceptual design of a fast neutron operated high power energy amplifier , 1995 .

[41]  Precise determination of electroweak parameters in neutrino-nucleon scattering. , 2001, Physical review letters.

[42]  A. Bodek,et al.  Erratum: Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering [Phys. Rev. Lett.88, 091802 (2002)] , 2003 .

[43]  G. Dunn,et al.  Photodissociation ofH2+andD2+: Experiment , 1972 .

[44]  Martin Reiser,et al.  Theory and Design of Charged Particle Beams , 1994 .