Multimegawatt DAE$\delta$ALUS Cyclotrons for Neutrino Physics
暂无分享,去创建一个
A. Adelmann | M. H. Shaevitz | W. A. Barletta | M. Abs | S. Gammino | L. Stingelin | J. R. Alonso | L. Calabretta | W. Kleeven | M. Seidel | D. Campo | L. Celona | J. M. Conrad | J. J. Yang | A. Calanna | A. Adelmann | R. Barlow | T. Koeth | L. Stingelin | M. Shaevitz | J. Alonso | M. Shaevitz | W. Barletta | L. Celona | S. Gammino | W. Kleeven | H. Okuno | M. Seidel | L. Calabretta | A. Calanna | D. Campo | M. Maggiore | R. Barlow | T. Koeth | M. Maggiore | H. Okuno | L.A.C. Piazza | J. Yeck | J. Yeck | M. Abs | L. Piazza | J. Conrad | R. Barlow | W. Barletta | J. Alonso | J. Conrad | Jianjun Yang
[1] Arcadi Santamaria,et al. Present and future bounds on non-standard neutrino interactions , 2003, hep-ph/0302093.
[2] D. Barnia,et al. STATUS OF THE HIGH CURRENT PROTON ACCELERATOR FOR THE TRASCO PROGRAM , 2002 .
[3] G. Andler,et al. CRYRING — a synchrotron, cooler and storage ring , 1993 .
[4] S. Incerti,et al. Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.
[5] J. Beacom,et al. Angular distribution of neutron inverse beta decay , n̄ , 1999 .
[6] E. Forton,et al. Recent development and progress of IBA cyclotrons , 2011 .
[7] R. Veness,et al. Vacuum stability for ion induced gas desorption , 1999 .
[8] J. J. Yang,et al. Proposal for an electron antineutrino disappearance search using high-rate 8Li production and decay. , 2012, Physical review letters.
[9] J. J. Yang,et al. Beam dynamics simulation for the high intensity DAEδALUS cyclotrons , 2012, 1209.5864.
[10] Sandy S. C. Law. Neutrino Models and Leptogenesis , 2009, 0901.1232.
[11] J. Conrad,et al. Short-baseline neutrino oscillation waves in ultra-large liquid scintillator detectors , 2011, 1105.4984.
[12] C. Feigerle,et al. SNS stripper foil development program , 2008 .
[13] Y. Kadi,et al. Beam cooling with ionization losses , 2006, hep-ph/0602032.
[14] H. Wiedemann. Particle accelerator physics , 1993 .
[15] C. Rubbia,et al. A cyclotron-based accelerator for driving the Energy Amplifier , 1995 .
[16] Fang Yang,et al. The cyclotron development activities at CIAE , 2011 .
[17] Alessandra Tonazzo,et al. The next-generation liquid-scintillator neutrino observatory LENA , 2011, 1104.5620.
[18] Andreas Adelmann,et al. PRODUCTION OF A 1.3 MW PROTON BEAM AT PSI , 2010 .
[19] G. Karagiorgi,et al. Expression of Interest for a Novel Search for CP Violation in the Neutrino Sector: DAEdALUS , 2010, 1006.0260.
[20] J. Mitchell,et al. Production of low-vibrational-state H2+ ions for collision studies , 1987 .
[21] A. Adelmann,et al. Towards quantitative simulations of high power proton cyclotrons , 2010, 1012.0718.
[22] M. Droba,et al. Characterization of volume type ion source for p, H2+ and H3+ beams , 2009, 1606.05869.
[23] A. Anderson,et al. Coherent Neutrino Scattering in Dark Matter Detectors , 2011, 1103.4894.
[24] A. McInturff,et al. Accelerator-Driven Thorium Cycle: New Technology Makes It Feasible , 2002 .
[25] A. Adelmann,et al. Conceptual design of an 800 MeV high power proton driver , 2011 .
[26] T. Koi,et al. Geant 4 Developments and Applications , 2013 .
[27] W. Joho,et al. Studies on extraction efficiency and energy spread for the sin ring cyclotron , 1970 .
[28] A. Anderson,et al. Measuring active-to-sterile neutrino oscillations with neutral current coherent neutrino-nucleus scattering , 2012, 1201.3805.
[29] V. Taivassalo,et al. The Z4 orbit code and the focusing bar fields used calculations for superconducting cyclotrons , 1986 .
[30] A. Adelmann,et al. High performance computation on beam dynamics problems in high intensity compact cyclotrons , 2011 .
[31] G. Gallo,et al. STATUS OF THE VERSATILE ION SOURCE VIS * , 2008 .
[32] C. Bromberg,et al. Report of the US long baseline neutrino experiment study , 2007, 0705.4396.
[33] E. Mahner. Review of heavy-ion induced desorption studies for particle accelerators , 2008 .
[34] G. Kim,et al. A superconducting isochronous cyclotron stack as a driver for a thorium-cycle power reactor , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).
[35] L. Calabretta,et al. Preliminary study on a Multi Megawatt Cyclotron Complex to Search for CP Violation in the Neutrino Sector , 2010, 1010.1493.
[36] M. Larsson,et al. Dissociative recombination of H2+ studied in CRYRING , 1995 .
[37] A. Adelmann,et al. Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation, and application , 2010, 1003.0326.
[38] D. Burns,et al. Testing of a H2+‐enriched ion source for deuterium simulation , 1990 .
[39] M. Maggiore,et al. A Superconducting Ring Cyclotron to Deliver High Intensity Proton Beams , 2000 .
[40] Carlo Rubbia,et al. Conceptual design of a fast neutron operated high power energy amplifier , 1995 .
[41] Precise determination of electroweak parameters in neutrino-nucleon scattering. , 2001, Physical review letters.
[42] A. Bodek,et al. Erratum: Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering [Phys. Rev. Lett.88, 091802 (2002)] , 2003 .
[43] G. Dunn,et al. Photodissociation ofH2+andD2+: Experiment , 1972 .
[44] Martin Reiser,et al. Theory and Design of Charged Particle Beams , 1994 .