Symmetric Fractional Diffusion and Entropy Production

The discovery of the entropy production paradox (Hoffmann et al., 1998) raised basic questions about the nature of irreversibility in the regime between diffusion and waves. First studied in the form of spatial movements of moments of H functions, pseudo propagation is the pre-limit propagation-like movements of skewed probability density function (PDFs) in the domain between the wave and diffusion equations that goes over to classical partial differential equation propagation of characteristics in the wave limit. Many of the strange properties that occur in this extraordinary regime were thought to be connected in some manner to this form of proto-movement. This paper eliminates pseudo propagation by employing a similar evolution equation that imposes spatial unimodal symmetry on evolving PDFs. Contrary to initial expectations, familiar peculiarities emerge despite the imposed symmetry, but they have a distinct character.

[1]  Morten Mattrup Smedskjær,et al.  Statistical mechanics of glass , 2014 .

[2]  Christopher Essex,et al.  Tsallis Relative Entropy and Anomalous Diffusion , 2012, Entropy.

[3]  Karl Heinz Hoffmann,et al.  Tsallis and Rényi entropies in fractional diffusion and entropy production , 2000 .

[4]  Karl Heinz Hoffmann,et al.  Fractional Diffusion, Irreversibility and Entropy , 2003 .

[5]  J. Ruseckas Probabilistic model of N correlated binary random variables and non-extensive statistical mechanics , 2014, 1408.0088.

[6]  Fernando Montani,et al.  Quantifying higher-order correlations in a neuronal pool , 2015 .

[7]  Christopher Essex,et al.  Modeling anomalous superdiffusion , 2007 .

[8]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[9]  Dušan Zorica,et al.  The Cattaneo type space-time fractional heat conduction equation , 2012 .

[10]  J. A. Tenreiro Machado,et al.  Entropy Analysis of Integer and Fractional Dynamical Systems , 2010 .

[11]  Omar Abu Arqub,et al.  New Results on Fractional Power Series: Theory and Applications , 2013, Entropy.

[12]  Daniel S. Banks,et al.  Anomalous diffusion of proteins due to molecular crowding. , 2005, Biophysical journal.

[13]  Karl Heinz Hoffmann,et al.  A unified approach to resolving the entropy production paradox , 2012 .

[14]  J. Ruseckas Canonical ensemble in non-extensive statistical mechanics , 2015, 1503.03778.

[15]  Shaher Momani,et al.  Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique , 2014, Entropy.

[16]  Yu Zhang,et al.  Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domains , 2015, Entropy.

[17]  A. M. Mathai,et al.  Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy , 2006, cond-mat/0607605.

[18]  Paolo Paradisi Fractional calculus in statistical physics: The case of time fractional diffusion equation , 2015 .

[19]  Yuriy Povstenko,et al.  Fractional Heat Conduction in an Infinite Medium with a Spherical Inclusion , 2013, Entropy.

[20]  A. Plastino,et al.  MaxEnt, second variation, and generalized statistics , 2015, 1503.07580.

[21]  Karl Heinz Hoffmann,et al.  Fractional Diffusion and Entropy Production , 1998 .

[22]  Karl Heinz Hoffmann,et al.  The superdiffusion entropy production paradox in the space-fractional case for extended entropies , 2010 .

[23]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[24]  J. Klafter,et al.  Scale-invariant motion in intermittent chaotic systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Hong Wang,et al.  Fast solution methods for space-fractional diffusion equations , 2014, J. Comput. Appl. Math..

[26]  Yuri Luchko,et al.  Wave-diffusion dualism of the neutral-fractional processes , 2015, J. Comput. Phys..

[27]  O Bénichou,et al.  Two-dimensional intermittent search processes: An alternative to Lévy flight strategies. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Friedrich Schlögl,et al.  Probability and Heat , 1989 .

[29]  Yangquan Chen,et al.  Genetic Algorithm-Based Identification of Fractional-Order Systems , 2013, Entropy.

[30]  Y. Povstenko Linear Fractional Diffusion-Wave Equation for Scientists and Engineers , 2015 .

[31]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[32]  Sibani,et al.  Diffusion in hierarchies. , 1988, Physical review. A, General physics.

[33]  Arak M. Mathai,et al.  Computational Solutions of Distributed Order Reaction-Diffusion Systems Associated with Riemann-Liouville Derivatives , 2012, Axioms.

[34]  Marcin Szpyrka,et al.  An Entropy-Based Network Anomaly Detection Method , 2015, Entropy.

[35]  Arak M. Mathai,et al.  Analysis of Solar Neutrino Data from Super-Kamiokande I and II , 2014, Entropy.

[36]  Karl Heinz Hoffmann,et al.  The similarity group and anomalous diffusion equations , 2000 .

[37]  Karl-Heinz Hoffmann,et al.  Time Evolution of Relative Entropies for Anomalous Diffusion , 2013, Entropy.

[38]  Jamshad Ahmad,et al.  Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators , 2015 .

[39]  M. Shlesinger Mathematical physics: Search research , 2006, Nature.

[40]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[41]  S. Havlin,et al.  Diffusion in disordered media , 1991 .

[42]  Francesco Mainardi,et al.  Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation , 2012, Comput. Math. Appl..