1.5 μm lasers with sub 10 mHz linewidth

We report on two ultrastable lasers stabilized to single-crystal silicon Fabry-Pérot cavities at 124 K. The lasers show unprecedented thermal noise-limited frequency instabilities of 4×10<sup>−17</sup> and linewidths below 10 mHz.

[1]  D. A. Howe,et al.  Characterization of Clocks and Oscillators , 2017 .

[2]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[3]  M. Schioppo,et al.  Ultrastable optical clock with two cold-atom ensembles , 2016, Nature Photonics.

[4]  N. von Bandel,et al.  Time-dependent laser linewidth: beat-note digital acquisition and numerical analysis. , 2016, Optics express.

[5]  M. Lukin,et al.  Gravitational wave detection with optical lattice atomic clocks , 2016, 1606.01859.

[6]  Jun Ye,et al.  A second generation of low thermal noise cryogenic silicon resonators , 2016 .

[7]  B. Fang,et al.  MIGA: combining laser and matter wave interferometry for mass distribution monitoring and advanced geodesy , 2016, SPIE Photonics Europe.

[8]  Jun Ye,et al.  High-performance near- and mid-infrared crystalline coatings , 2016, 1604.00065.

[9]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[10]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.

[11]  Mark A. Kasevich,et al.  Atom interferometric gravitational wave detection using heterodyne laser links , 2015, 1501.06797.

[12]  Nadine Gottschalk,et al.  Fundamentals Of Photonics , 2016 .

[13]  J. Thompson,et al.  A Cold-Strontium Laser in the Superradiant Crossover Regime , 2015, 1510.06733.

[14]  Guido Bartl,et al.  Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K , 2015, 1507.06822.

[15]  National Institute of Standards,et al.  Nonlinear spectroscopy of Sr atoms in an optical cavity for laser stabilization , 2015, 1507.05757.

[16]  Till Rosenband,et al.  Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu(3+)∶Y(2)SiO(5). , 2015, Physical review letters.

[17]  Uwe Sterr,et al.  On the relation between uncertainties of weighted frequency averages and the various types of Allan deviations , 2015, 1504.00466.

[18]  Manoj Das,et al.  Cryogenic optical lattice clocks , 2015, Nature Photonics.

[19]  Thomas Legero,et al.  8  ×  10⁻¹⁷ fractional laser frequency instability with a long room-temperature cavity. , 2015, Optics letters.

[20]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[21]  S. Falke,et al.  Ultrastable laser with average fractional frequency drift rate below 5 × 10⁻¹⁹/s. , 2014, Optics letters.

[22]  J. L. Hall,et al.  Reduction of residual amplitude modulation to 1 × 10⁻⁶ for frequency modulation and laser stabilization. , 2014, Optics letters.

[23]  Fabrizio Berizzi,et al.  A fully photonics-based coherent radar system , 2014, Nature.

[24]  M. Pospelov,et al.  Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.

[25]  A S Sørensen,et al.  Heisenberg-limited atom clocks based on entangled qubits. , 2013, Physical review letters.

[26]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[27]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[28]  J. Ye,et al.  Probing Many-Body Interactions in an Optical Lattice Clock (Preprint) , 2013, 1310.5248.

[29]  Wei Zhang,et al.  Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.

[30]  Jun Ye,et al.  Optical spectrum analyzer with quantum-limited noise floor. , 2013, Physical review letters.

[31]  M. Aspelmeyer,et al.  Tenfold reduction of Brownian noise in optical interferometry , 2013, 1302.6489.

[32]  M. Bishof,et al.  A Quantum Many-Body Spin System in an Optical Lattice Clock , 2012, Science.

[33]  S. Falke,et al.  Providing $10^{-16}$ Short-Term Stability of a 1.5-$\mu\hbox{m}$ Laser to Optical Clocks , 2012, IEEE Transactions on Instrumentation and Measurement.

[34]  A. Donald,et al.  Supplemental Material to , 2013 .

[35]  W. Marsden I and J , 2012 .

[36]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[37]  John Hartnett,et al.  Adapting a Cryogenic Sapphire Oscillator for Very Long Baseline Interferometry , 2011, 1106.0021.

[38]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[39]  S Grop,et al.  ELISA: a cryocooled 10 GHz oscillator with 10(-15) frequency stability. , 2009, The Review of scientific instruments.

[40]  A. Nevsky,et al.  A laboratory test of the isotropy of light propagation at the 10−17 level , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[41]  S. Dawkins,et al.  Considerations on the measurement of the stability of oscillators with frequency counters , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[43]  G. Stephan,et al.  Laser line shape and spectral density of frequency noise (9 pages) , 2005 .

[44]  V. Giordano,et al.  On the measurement of frequency and of its sample variance with high-resolution counters , 2004, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[45]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[46]  H. Telle,et al.  Ultraprecise measurement of optical frequency ratios. , 2001, Physical review letters.

[47]  H. Telle,et al.  Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements , 2001, physics/0107037.

[48]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[49]  L S Ma,et al.  Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. , 1994, Optics letters.

[50]  K. Jousten,et al.  Detection of small pressure pulses in an ion pumped ultrahigh vacuum system , 1994 .

[51]  E. Arimondo,et al.  Laser Manipulation of Atoms and Ions , 1992 .

[52]  D. W. Allan,et al.  Should the classical variance be used as a basic measure in standards metrology? , 1987, IEEE Transactions on Instrumentation and Measurement.

[53]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[54]  Virendra N. Mahajan,et al.  Strehl ratio for primary aberrations: some analytical results for circular and annular pupils. , 1982 .

[55]  J. M. Moran,et al.  Coherence limits for very-long-baseline interferometry , 1981, IEEE Transactions on Instrumentation and Measurement.

[56]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[57]  Fred L. Walls,et al.  Measurement of the Short-Term Stability of Quartz Crystal Resonators and the Implications for Crystal Oscillator Design and Applications , 1975, IEEE Transactions on Instrumentation and Measurement.

[58]  D. W. Allan,et al.  A Method for Estimating the Frequency Stability of an Individual Oscillator , 1974 .

[59]  W. K. Klemperer,et al.  Long-baseline radio interferometry with independent frequency standards , 1972 .