Characterization of Modification of 193-nm Photoresist by HBr Plasma

[Vereecke, G.; Claes, M.; Le, Q. T.; Kesters, E.; Struyf, H.] IMEC, B-3001 Heverlee, Belgium. [Carleer, R.; Adriaensens, P.] Univ Hasselt, IMO Div Chem, B-3590 Diepenbeek, Belgium. guy.vereecke@imec.be

[1]  David B. Graves,et al.  Photoresist modifications by plasma vacuum ultraviolet radiation: The role of polymer structure and plasma chemistry , 2010 .

[2]  S. Iwasa,et al.  Synthesis of well-defined norbornene–lactone-functionalized polymers via ATRP , 2010 .

[3]  R. Allen Front Matter: Volume 7639 , 2010 .

[4]  A. Bazin,et al.  Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists , 2009 .

[5]  Olivier Joubert,et al.  Plasma impact on 193 nm photoresist linewidth roughness: Role of plasma vacuum ultraviolet light , 2009 .

[6]  David B. Graves,et al.  Synergistic effects of vacuum ultraviolet radiation, ion bombardment, and heating in 193nm photoresist roughening and degradation , 2008 .

[7]  A. Franquet,et al.  Chemical and structural modifications in a 193-nm photoresist after low-k dry etch , 2008 .

[8]  Han-Ku Cho,et al.  Effects of various plasma pretreatments on 193 nm photoresist and linewidth roughness after etching , 2006 .

[9]  Hiroichi Kawahira,et al.  Changes of chemical nature of photoresists induced by various plasma treatments and their impact on LWR , 2006, SPIE Advanced Lithography.

[10]  Arpan P. Mahorowala,et al.  Line edge roughness reduction by plasma curing photoresists , 2005, SPIE Advanced Lithography.

[11]  Y. Matsui,et al.  Improvement of Dry Etching Resistance of Resists by Deep UVCure , 1999 .

[12]  Nobuo Ueno,et al.  Photodecomposition of poly(methylmethacrylate) thin films by monochromatic soft x-ray radiation , 1995 .

[13]  Shalaby W. Shalaby,et al.  Radiation effects on polymers , 1991 .

[14]  Kuniaki Tanaka,et al.  Study of Hydrogen Vacuum-Ultraviolet Light Sources for Submicron Lithography , 1990 .

[15]  J. A. Moore,et al.  Degradation of poly(methylmethacrylate) by deep ultraviolet, x‐ray, electron beam, and proton beam irradiations , 1988 .

[16]  I. Reid,et al.  The radiation chemistry of poly(methyl methacrylate) polymer resists , 1988 .

[17]  Yoshiaki Mimura,et al.  Deep-UV Photolithography , 1978 .

[18]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[19]  S. G. Bond,et al.  Evidence against the prevailing view that the photolysis of methyl methacrylate/methyl vinyl ketone copolymers occurs predominantly by Norrish type II chain scission , 1991 .

[20]  D. Uhlmann,et al.  Modelling of condensation reactions in an amine-cured epoxy system with groups of unequal reactivity , 1991 .

[21]  Kenji Fueki,et al.  Photodegradation of poly(methyl methacrylate) by monochromatic light: Quantum yield, effect of wavelengths, and light intensity , 1990 .

[22]  C. David,et al.  Statistical theories of main chain scission and crosslinking of polymers—application to the photolysis and radiolysis of polystyrene studied by gel permeation chromatography , 1978 .

[23]  M. Dole The radiation chemistry of macromolecules , 1972 .