Short Communication: On multiple roots in Descartes' Rule and their distance to roots of higher derivatives
暂无分享,去创建一个
[1] C. Jacobi. Observatiunculae ad theoriam aequationum pertinentes. , 1835 .
[2] G. Szegö,et al. Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen , 1922 .
[3] A. Ostrowski. Note on Vincent's Theorem , 1950 .
[4] George Polya,et al. Remarks on de la Vallée Poussin means and convex conformal maps of the circle. , 1958 .
[5] Rudolph E. Langer,et al. On Numerical Approximation , 1959 .
[6] Alkiviadis G. Akritas,et al. Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.
[7] R. Riesenfeld,et al. Bounds on a polynomial , 1981 .
[8] I. J. Schoenberg,et al. On Variation Diminishing Spline Approximation Methods , 1988 .
[9] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[10] Peter Volkmann,et al. Bemerkungen zu einem Satz von Rodé , 1991 .
[11] D. Dimitrov. A refinement of the gauss-lucas theorem , 1998 .
[12] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[13] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[14] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .
[15] Fabrice Rouillier,et al. Bernstein's basis and real root isolation , 2004 .
[16] Kurt Mehlhorn,et al. New bounds for the Descartes method , 2005, SIGS.