Algae-based metallic nanoparticles: Synthesis, characterization and applications.

Nanomaterials (NMs) tailored via conventional physicochemical routes play havoc with the environment that has led to the evolution of competent green routes for the actualization of a circular economy on an industrial-scale. Algae belonging to the class Cyanophyceae, Chlorophyceae, Phaeophyceae and Rhodophyceae have been harnessed as nano-machineries through intracellular and extracellular synthesis of gold (Au), silver (Ag) and several other metallic nanoparticles. Algae are an appealing platform for the production of diverse NMs, primarily due to the presence of bioactive compounds such as pigments and antioxidants in their cell extracts that act as biocompatible reductants. Chlorella spp. and Sargassum spp. have been extensively explored for the synthesis of nanoparticles having antimicrobial properties, which can potentially substitute conventional antibiotics. Characterization of nanoparticles (NPs) synthesised from algae has been done using advanced spectroscopic, diffractographic and microscopic techniques such as UV-Vis FT-IR, DLS, XPS, XRD, SEM, TEM, AFM, HR-TEM, and EDAX. The present paper reviews the information available on algae-mediated biosynthesis of various NPs, their characterization and applications in different domains.

[1]  M. Blazquez,et al.  Biological synthesis of metallic nanoparticles using algae. , 2013, IET nanobiotechnology.

[2]  C. Schulz,et al.  Formation of carbon nanoparticles by the condensation of supersaturated atomic vapor obtained by the laser photolysis of C3O2 , 2007 .

[3]  J. Venkatesan,et al.  Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava , 2014, Bioprocess and Biosystems Engineering.

[4]  M. Zahran,et al.  Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. , 2013, Carbohydrate polymers.

[5]  A. Kanimozhi,et al.  EXTRACELLULAR SYNTHESIS OF SILVER NANOPARTICLES FROM A MARINE ALGA, SARGASSUM POLYCYSTUM C. AGARDH AND THEIR BIOPOTENTIALS , 2015 .

[6]  Khalid Saeed,et al.  Nanoparticles: Properties, applications and toxicities , 2017, Arabian Journal of Chemistry.

[7]  E. Serra,et al.  Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications , 2013 .

[8]  G. Southam,et al.  Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  V. Ganesh Kumar,et al.  Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  Y. Abboud,et al.  Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata) , 2014, Applied Nanoscience.

[11]  T. C. Taranath,et al.  Biosynthesis of nanoparticles using microbes- a review. , 2014, Colloids and surfaces. B, Biointerfaces.

[12]  V. Kumar,et al.  A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. , 2007, Colloids and surfaces. B, Biointerfaces.

[13]  A. Kumaraguru,et al.  Antibacterial Effects of Ag, Au and Bimetallic (Ag-Au) Nanoparticles Synthesized from Red Algae , 2013 .

[14]  C. Kannan,et al.  Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides , 2013 .

[15]  Y. Chisti Biodiesel from microalgae beats bioethanol. , 2008, Trends in biotechnology.

[16]  C. Sicard,et al.  Nano-gold biosynthesis by silica-encapsulated micro-algae: a “living” bio-hybrid material , 2010 .

[17]  Clayton Jeffryes,et al.  Biogenic nanomaterials from photosynthetic microorganisms. , 2015, Current opinion in biotechnology.

[18]  G. Annadurai,et al.  Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens , 2014 .

[19]  K Kathiresan,et al.  A review on biosynthesis of nanoparticles by marine organisms. , 2013, Colloids and surfaces. B, Biointerfaces.

[20]  M. Avalos-Borja,et al.  Biosynthesis and microscopic study of metallic nanoparticles. , 2013, Micron.

[21]  M. Lastra,et al.  Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. , 2017, Colloids and surfaces. B, Biointerfaces.

[22]  I. Vávra,et al.  Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation , 2011 .

[23]  Ganesan Singaravelu,et al.  Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler , 2008, Journal of Materials Science.

[24]  Arulvasu Chinnasamy,et al.  Synthesis of Silver Nanoparticles and the Antibacterial and Anticancer Activities of the Crude Extract of Sargassum Polycystum C. Agardh , 2012 .

[25]  Yusuf Chisti,et al.  Disruption of microbial cells for intracellular products , 1986 .

[26]  R. Pal,et al.  Green Synthesis of Gold Nanoparticles Using Cyanobacteria and their Characterization , 2011 .

[27]  T. Coradin,et al.  Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[28]  Vijay Chandra Verma,et al.  Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. , 2010, Nanomedicine.

[29]  Mostafa M.H. Khalil,et al.  Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity , 2014 .

[30]  Feng Wu,et al.  Etching synthesis of iron oxide nanoparticles for adsorption of arsenic from water , 2016 .

[31]  Arulvasu Chinnasamy,et al.  Synthesis of silver nanoparticles and the antibacterial and anticancer activities of the crude extract of sargassum polycystum C , 2012 .

[32]  Gopalakrishnan Kumar,et al.  Seaweeds: A resource for marine bionanotechnology. , 2016, Enzyme and microbial technology.

[33]  G. Poinern A laboratory course in nanoscience and nanotechnology , 2014 .

[34]  C. Kannan,et al.  GREEN SYNTHESIS OF SILVER NANOPARTICLES USING MARINE BROWN ALGAE TURBINARIA CONOIDES AND ITS ANTIBACTERIAL ACTIVITY , 2012 .

[35]  M. Sayadi,et al.  Green synthesis of palladium nanoparticles using Chlorella vulgaris , 2017 .

[36]  J. Devi,et al.  Production of biogenic Silver nanoparticles using Sargassum longifolium and its applications , 2013 .

[37]  B. Naveena,et al.  BIOLOGICAL SYNTHESIS OF GOLD NANOPARTICLES USING MARINE ALGAE GRACILARIA CORTICATA AND ITS APPLICATION AS A POTENT ANTIMICROBIAL AND ANTIOXIDANT AGENT , 2013 .

[38]  Rishikesh Pandey,et al.  Engineering tailored nanoparticles with microbes: quo vadis? , 2016, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[39]  J. Staden,et al.  Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae) , 2013 .

[40]  Richard G. Haverkamp,et al.  Gold nanoparticles produced in a microalga , 2011 .

[41]  D. Lee,et al.  Biological Synthesis of Gold Nanoparticles Using the Aqueous Extract of the Brown Algae Laminaria Japonica , 2011 .

[42]  Sapna Sharma,et al.  Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method , 2011 .

[43]  W. Fathy,et al.  Green Biosynthesis of Silver Nanoparticles Using Marine Red AlgaeAcanthophora specifera and its Antimicrobial Activity , 2016 .

[44]  N. Ghosh,et al.  Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa , 2014 .

[45]  Rishikesh Pandey,et al.  Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[46]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[47]  A. Higuchi,et al.  Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens , 2015, Parasitology Research.

[48]  M. Yousefzadi,et al.  Green Synthesis of Silver Nanoparticles using Ulva flexousa from the Persian Gulf, Iran , 2014 .

[49]  C. Kannan,et al.  Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization , 2013, Journal of Nanostructure in Chemistry.

[50]  C. Reddy,et al.  Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. , 2012, Bioresource technology.

[51]  R. M. Gengan,et al.  Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity , 2016, Journal of Nanostructure in Chemistry.

[52]  Jianping Xie,et al.  Silver nanoplates: from biological to biomimetic synthesis. , 2007, ACS nano.

[53]  A. Love,et al.  “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants , 2014, Acta naturae.

[54]  P. Anantharaman,et al.  Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum , 2013, Applied Nanoscience.

[55]  F. Namvar,et al.  Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract , 2013, Materials.

[56]  M. Meneghetti,et al.  Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. , 2009, Physical chemistry chemical physics : PCCP.

[57]  I. Javakhishvili,et al.  Synthesis of Gold Nanoparticles by Some Strains of Arthrobacter Genera , 2012 .

[58]  M. Govindaraju,et al.  Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. , 2013, Colloids and surfaces. B, Biointerfaces.

[59]  M. Faramarzi,et al.  Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica , 2010, Biotechnology and applied biochemistry.

[60]  Ey,et al.  Facile biosynthesis of gold nanoparticles exploiting optimum pH andtemperature of fresh water algae Chlorella pyrenoidusa , 2012 .

[61]  Abraham J Domb,et al.  Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. , 2008, Biomaterials.

[62]  C. Erkey,et al.  Synthesis of supported nanoparticles in supercritical fluids by supercritical fluid reactive deposition: Current state, further perspectives and needs , 2017 .

[63]  Yang Yang,et al.  ZnO nano-ridge structure and its application in inverted polymer solar cell , 2009 .

[64]  I. Michalak,et al.  Algae as production systems of bioactive compounds , 2015 .

[65]  V. Gopinath,et al.  Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria , 2012 .

[66]  R. Kumar,et al.  Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum , 2002, Chembiochem : a European journal of chemical biology.

[67]  F. Danafar,et al.  Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity , 2016 .

[68]  P. Krishnamoorthy,et al.  Potential Application of Kappaphycus alvarezii in Agricultural and Pharmaceutical Industry , 2012 .

[69]  M. Mahdieh,et al.  Green biosynthesis of silver nanoparticles by Spirulina platensis , 2012 .

[70]  V. Kumar,et al.  Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. , 2015, Materials science & engineering. C, Materials for biological applications.

[71]  Ravindra Kumar,et al.  Algae as crucial organisms in advancing nanotechnology: a systematic review , 2016, Journal of Applied Phycology.

[72]  S. Rajeshkumar,et al.  A review on biogenic synthesis of gold nanoparticles, characterization, and its applications , 2017, Resource-Efficient Technologies.

[73]  S. Kateriya,et al.  Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles , 2011, Journal of nanobiotechnology.

[74]  Si Amar Dahoumane,et al.  Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. , 2012, Biotechnology and bioengineering.

[75]  S. Geimer,et al.  Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica , 2014, Beilstein journal of nanotechnology.

[76]  Jayshree Annamalai,et al.  Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency , 2015, Applied Nanoscience.

[77]  G. Sangeetha,et al.  Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties , 2011 .

[78]  G. Southam,et al.  Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[79]  rasekaran,et al.  Drug Delivery System for Controlled Cancer Therapy Using Physico- Chemically Stabilized Bioconjugated Gold Nanoparticles Synthesized from Marine Macroalgae, Padina Gymnospora , 2011 .

[80]  Monaliben Shah,et al.  Green Synthesis of Metallic Nanoparticles via Biological Entities , 2015, Materials.

[81]  D. Shanehbandi,et al.  Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. , 2011, BioImpacts : BI.

[82]  Rajneesh,et al.  Recent Developments in Green Synthesis of Metal Nanoparticles Utilizing Cyanobacterial Cell Factories , 2019, Nanomaterials in Plants, Algae and Microorganisms.

[83]  S. Sudha,et al.  Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects , 2011, Avicenna journal of medical biotechnology.

[84]  T. Prasad,et al.  Marine Algae Mediated Synthesis of Silver Nanopaticles using Scaberia agardhii Greville , 2013 .

[85]  R. Naidu,et al.  Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles , 2015, Journal of Applied Phycology.

[86]  S. Mukherji,et al.  Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi , 2012 .

[87]  Mario Khalil Habeeb Biosynthesis of nanoparticles by microorganisms and their applications , 2013 .

[88]  K. Govindaraju,et al.  Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[89]  G. Southam,et al.  Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[90]  N. Thajuddin,et al.  Algal Nanoparticles: Synthesis and Biotechnological Potentials , 2016 .

[91]  Utkarsha U. Shedbalkar,et al.  Microbial synthesis of gold nanoparticles: current status and future prospects. , 2014, Advances in colloid and interface science.

[92]  K. Govindaraju,et al.  Sargassum myriocystum mediated biosynthesis of gold nanoparticles. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[93]  V. Kumar,et al.  Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. , 2009, Journal of nanoscience and nanotechnology.

[94]  W. El-said,et al.  Synthesis of Metal Nanoparticles Inside Living Human Cells Based on the Intracellular Formation Process , 2014, Advanced materials.

[95]  Prakash Santhiyagu,et al.  Synthesis and Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinaria conoides, and Their Antimicrofouling Activity , 2014, TheScientificWorldJournal.

[96]  Absar Ahmad,et al.  BIOSYNTHESIS OF METAL NANOPARTICLES USING FUNGI AND ACTINOMYCETE , 2003 .

[97]  Z. Yamani,et al.  Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties. , 2017, Ultrasonics sonochemistry.

[98]  R. V. Omkumar,et al.  Growth of gold nanoparticles in human cells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[99]  Z. Rahimi,et al.  The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh , 2014 .

[100]  A. Eid,et al.  Biosynthesis of nanoparticles and silver nanoparticles , 2015, Bioresources and Bioprocessing.

[101]  S. Iravani,et al.  Synthesis of silver nanoparticles: chemical, physical and biological methods , 2014, Research in pharmaceutical sciences.

[102]  P. Visvanathan,et al.  EFFICACY OF BIO-SYNTHESIZED SILVER NANOPARTICLES USING ACANTHOPHORA SPICIFERA TO ENCUMBER BIOFILM FORMATION , 2012 .

[103]  P. Pardha-Saradhi,et al.  Photosynthetic Electron Transport System Promotes Synthesis of Au-Nanoparticles , 2013, PloS one.

[104]  S. V. Rao,et al.  Biosynthesis of Silver Nanoparticles from Marine Seaweed Sargassum cinereum and their Antibacterial Activity , 2013, Indian journal of pharmaceutical sciences.

[105]  I. Ibraheem,et al.  Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity , 2017 .

[106]  Hamid Reza Ghorbani,et al.  A Review of Methods for Synthesis of Al Nanoparticles , 2014 .

[107]  S. Rajesha,et al.  SILVER NANOPARTICLES BIOSYNTHESIS USING MARINE ALGA PADINA PAVONICA (LINN.) AND ITS MICROBICIDAL ACTIVITY , 2012 .

[108]  N. Geetha,et al.  Microwave-Mediated Extracellular Synthesis of Metallic Silver and Zinc Oxide Nanoparticles Using Macro-Algae (Gracilaria edulis) Extracts and Its Anticancer Activity Against Human PC3 Cell Lines , 2014, Applied Biochemistry and Biotechnology.

[109]  K. Schirmer,et al.  Silver nanoparticle toxicity and association with the alga Euglena gracilis , 2015 .

[110]  M. Elumalai,et al.  Green synthesis of silver nano particles from marine alga Gracilaria edulis , 2011 .

[111]  G. Southam,et al.  Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)--chloride complexes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[112]  F. Namvar,et al.  Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract , 2013, Molecules.

[113]  Jing Kong,et al.  Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. , 2010, Nano letters.

[114]  Hideyoshi Harashima,et al.  A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. , 2011, Advanced drug delivery reviews.

[115]  M. Govindaraju,et al.  Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. , 2013, Applied Nanoscience.

[116]  Bhimba B. Valentin Anticancer Activity of Silver Nanoparticles Synthesized by the Seaweed Ulva lactuca Invitro , 2012 .

[117]  B. Gibbins,et al.  Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. , 2008, The Journal of antimicrobial chemotherapy.

[118]  F. Namvar,et al.  Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction , 2018, Cancer Nanotechnology.

[119]  Hemlata,et al.  Cyanobacteria as a bioreactor for synthesis of silver nanoparticles-an effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability. , 2019, Journal of microbiological methods.

[120]  S. Iravani,et al.  Metallic nanoparticles: green synthesis and spectroscopic characterization , 2017, Environmental Chemistry Letters.

[121]  Aharon Gedanken,et al.  Antibiofilm activity of nanosized magnesium fluoride. , 2009, Biomaterials.

[122]  Peter Amaladhas Thomas,et al.  Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark , 2016, Journal of Nanostructure in Chemistry.

[123]  R. Devika,et al.  COLLECTION, ISOLATION, IDENTIFICATION, AND BIOSYNTHESIS OF SILVER NANOPARTICLES USING MICROALGA CHLORELLA PYRENOIDOSA , 2013 .

[124]  Xiaolin Tang,et al.  Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract. , 2015, IET nanobiotechnology.

[125]  S. Sudha,et al.  Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. , 2013, Indian journal of experimental biology.

[126]  D. Priebat,et al.  Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. , 1982, The Journal of investigative dermatology.

[127]  Manoj Kumar,et al.  Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of Spirulina platensis , 2015 .

[128]  M. Sathishkumar,et al.  Biosynthesis of Au(0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides , 2011 .

[129]  Si Amar Dahoumane,et al.  A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae , 2014, Journal of Nanoparticle Research.

[130]  Scott G. Stewart,et al.  Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications , 2013 .

[131]  M. P. Proenca,et al.  Bottom-up nanofabrication using self-organized porous templates , 2014 .

[132]  I. Nabipour,et al.  A Simple Green Synthesis of Palladium Nanoparticles with Sargassum Alga and Their Electrocatalytic Activities Towards Hydrogen Peroxide , 2015, Applied Biochemistry and Biotechnology.

[133]  A. Higuchi,et al.  Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? , 2015, Parasitology Research.

[134]  Evan K. Wujcik,et al.  Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. , 2016, Enzyme and microbial technology.

[135]  Yasunori Tanaka Synthesis of Nano-size Particles in Thermal Plasmas , 2017 .

[136]  J. Devi,et al.  INVITRO ANTICANCER ACTIVITY OF SILVER NANOPARTICLES SYNTHESIZED USING THE EXTRACT OF GELIDIELLA Sp. , 2012 .

[137]  Monaliben Shah,et al.  A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses , 2017 .

[138]  B. P. Harini,et al.  Marine microbes: Invisible nanofactories , 2013 .

[139]  Y. Ting,et al.  Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. , 2005, The journal of physical chemistry. B.

[140]  Jay H. Lee,et al.  Facile fabrication of silver nanoparticle embedded CaCO3 microspheres via microalgae-templated CO2 biomineralization: application in antimicrobial paint development , 2014 .

[141]  M. Sardar,et al.  Screening of cyanobacterial extracts for synthesis of silver nanoparticles , 2015, World journal of microbiology & biotechnology.

[142]  M. Ghobara,et al.  Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities , 2017, Environmental Monitoring and Assessment.

[143]  Susan Azizi,et al.  Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract , 2014 .

[144]  J. Suriya,et al.  Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. , 2012 .

[145]  Evaluation of the performance of an algal bioreactor for silver nanoparticle production , 2015, Journal of Applied Phycology.

[146]  R. Pal,et al.  Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes , 2015, Journal of Applied Phycology.

[147]  M. Siddiqui,et al.  Green Synthesis of Silver Nanoparticles and Study of Their Antimicrobial Properties , 2018, Journal of Polymers and the Environment.

[148]  K. Krishnamoorthy,et al.  Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. , 2015, IET nanobiotechnology.

[149]  S. Godet,et al.  Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity , 2008 .

[150]  D. MubarakAli,et al.  Gold nanoparticles from pro and eukaryotic photosynthetic microorganisms--comparative studies on synthesis and its application on biolabelling. , 2013, Colloids and surfaces. B, Biointerfaces.

[151]  Thangaraju Nallamuthu Synthesis of silver nanoparticles using green and brown seaweeds , 2012 .

[152]  Si Amar Dahoumane,et al.  Stoichiometrically controlled production of bimetallic Gold-Silver alloy colloids using micro-alga cultures. , 2014, Journal of colloid and interface science.

[153]  Si Amar Dahoumane,et al.  Species selection for the design of gold nanobioreactor by photosynthetic organisms , 2012, Journal of Nanoparticle Research.

[154]  Anderson Passos de Aragao,et al.  Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity , 2016 .

[155]  D. Mohan,et al.  Synthesis of silver nanoparticles using Phytoplankton and its characteristics , 2015 .

[156]  Siavash Iravani,et al.  Green synthesis of metal nanoparticles using plants , 2011 .

[157]  Y. Ting,et al.  Gold uptake by Chlorella vulgaris , 1995, Journal of Applied Phycology.

[158]  S. Nagarajan,et al.  Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India , 2013, Journal of Nanobiotechnology.

[159]  S. Magdalena,et al.  SYNTHESIS OF COPPER OXIDE NANO PARTICLES BY USING Phormidium cyanobacterium , 2010 .

[160]  Ashutosh Kumar,et al.  Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis , 2012 .

[161]  C. Kannan,et al.  Synthesis and Characterization of Antimicrobial Silver Nanoparticles Using Marine Brown Seaweed Padina tetrastromatica , 2012 .

[162]  N. Shanmugam,et al.  Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens , 2015, Applied Nanoscience.

[163]  A. Rahdar Study of Different Capping Agents Effect on the Structural and Optical Properties of Mn Doped ZnS Nanostructures - TI Journals , 2013 .

[164]  K. Shameli,et al.  Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum , 2015, Research on Chemical Intermediates.

[165]  L. Barsanti,et al.  Algae: Anatomy, Biochemistry, and Biotechnology , 2005 .

[166]  Soumyo Mukherji,et al.  Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy , 2014 .

[167]  Pratyusha Banerjee,et al.  Green nanotechnology - a new hope for medical biology. , 2013, Environmental toxicology and pharmacology.

[168]  N. Ghosh,et al.  Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles , 2014, Bioprocess and Biosystems Engineering.

[169]  Santhosh Gokul Murugaiah,et al.  Antifouling assessments on biogenic nanoparticles: A field study from polluted offshore platform. , 2015, Marine pollution bulletin.

[170]  Hirak K. Patra,et al.  Gold nanorod production by cyanobacteria—a green chemistry approach , 2010, Journal of Applied Phycology.

[171]  R. Naidu,et al.  Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation , 2012, Journal of Applied Phycology.

[172]  Marina V. Frontasyeva,et al.  MICROBIAL SYNTHESIS OF SILVER NANOPARTICLES BY STREPTOMYCES GLAUCUS AND SPIRULINA PLATENSIS , 2011 .

[173]  Hirak K. Patra,et al.  Screening of different algae for green synthesis of gold nanoparticles , 2012 .

[174]  Rasesh Y Parikh,et al.  Biological synthesis of metallic nanoparticles. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[175]  A. Ingle,et al.  Phycofabrication Of Silver Nanoparticles And Their Antibacterial Activity Against Human Pathogens , 2016 .

[176]  Ashok Kumar,et al.  Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. , 2014, Journal of photochemistry and photobiology. B, Biology.

[177]  Haytham M. M. Ibrahim Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms , 2015 .

[178]  R. Pal,et al.  Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation – a novel phenomenon , 2009, Journal of Applied Phycology.

[179]  Bruce Ravel,et al.  Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. , 2006, Environmental science & technology.

[180]  B. Ingham X-ray scattering characterisation of nanoparticles , 2015 .

[181]  M. Singh,et al.  Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga , 2013, Applied Nanoscience.

[182]  Daniel I. C. Wang,et al.  Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. , 2007, Small.

[183]  Y. Chisti,et al.  Recovery of microalgal biomass and metabolites: process options and economics. , 2003, Biotechnology advances.

[184]  P. Kumari,et al.  PHYTOSYNTHESIS OF SILVER NANOPARTICLES FROM THE EXTRACTS OF SEAWEED ULVA LACTUCA AND ITS ANTIMICROBIAL ACTIVITY , 2014 .

[185]  M. Blazquez,et al.  Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. , 2009, Journal of hazardous materials.

[186]  R. Nayak,et al.  Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24 , 2015, Journal of Applied Phycology.

[187]  S. Patra,et al.  Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity , 2015, Applied Nanoscience.

[188]  D. Raja,et al.  Biosynthesis of silver nanoparticles using Ulva fasciata ( Delile ) ethyl acetate extract and its activity against Xanthomonas campestris pv . malvacearum , 2002 .

[189]  R. Nayak,et al.  Microalga Scenedesmus sp.: A potential low-cost green machine for silver nanoparticle synthesis. , 2014, Journal of microbiology and biotechnology.

[190]  M. Gantar,et al.  Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity , 2014, Biotechnology reports.

[191]  T. Padmesh,et al.  Seaweed (Sargassum ilicifolium) assisted green synthesis of palladium nanoparticles , 2014 .

[192]  S. Palaniandy,et al.  Preparation of iron oxide nanoparticles by mechanical milling , 2011 .

[193]  S. Kanchi,et al.  Biogenic synthesis of nanoparticles: A review , 2015 .