Evolution of Brain Tumor and Stability of Geometric Invariants

This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

[1]  N. Ayache,et al.  Brain Tumor Growth Simulation , 2004 .

[2]  H E Cline,et al.  3D reconstruction of the brain from magnetic resonance images using a connectivity algorithm. , 1987, Magnetic Resonance Imaging.

[3]  Jean-Daniel Boissonnat,et al.  Three-dimensional reconstruction of complex shapes based on the Delaunay triangulation , 1993, Electronic Imaging.

[4]  J. Honnorat,et al.  [Supervision of low-grade gliomas with multiparametric MR imaging: research of radiologic indicators of malignancy transformation]. , 2008, Neuro-Chirurgie.

[5]  Laurent Capelle,et al.  Continuous growth of mean tumor diameter in a subset of grade II gliomas , 2003, Annals of neurology.

[6]  F. Cotton,et al.  Intérêt de l’IRM, avec séquences de diffusion, de perfusion et de la spectrométrie dans le diagnostic et la surveillance de gliomes d’aspect initial de grade 2 : recherche de marqueurs radiologiques orientant vers une aggravation tumorale de grade , 2008 .

[7]  F. Cotton Diffusion-perfusion in intra-axial brain tumors with high relaxivity contrast agents , 2006, Neuroradiology.

[8]  Boris Thibert Sur l'approximation géométrique d'une surface lisse : applications en géologie structurale , 2003 .

[9]  Hervé Delingette,et al.  Modélisation, déformation et reconnaissance d'objets tridimensionnels à l'aide de maillages simplexes , 1994 .

[10]  Jean-Marie Morvan,et al.  Generalized Curvatures , 2008, Geometry and Computing.

[11]  J. Giesen,et al.  Delaunay Triangulation Based Surface Reconstruction: Ideas and Algorithms , 2004 .

[12]  Eric Keppel,et al.  Approximating Complex Surfaces by Triangulation of Contour Lines , 1975, IBM J. Res. Dev..