Fuzzy web information retrieval system with fuzzy thesaurus using fuzzy relational BK-products

This study develops a web information retrieval system using the fuzzy relations in the indexing and ranking portions of standard web retrieval methods. The system was developed, including crawler, indexer, ranking portion, and user search structure. The BK-products of fuzzy relations with closure/interior properties are used to construct a fuzzy thesaurus and further to retrieve the relevant documents. The results of the system are evaluated and compared with the existing search methods.

[1]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[2]  Dario Lucarella,et al.  FIRST: Fuzzy Information Retrieval SysTem , 1991, J. Inf. Sci..

[3]  Ladislav J. Kohout,et al.  Interval computations with BK-products of fuzzy relations in diagnostic knowledge-based system CLINAID , 2003 .

[4]  Carlos Alberto Reyes García On the design of a fuzzy relational neural network for automatic speech recognition , 1994 .

[5]  L. Kohout,et al.  Special properties, closures and interiors of crisp and fuzzy relations , 1988 .

[6]  Antonio Gulli,et al.  The indexable web is more than 11.5 billion pages , 2005, WWW '05.

[7]  Ladislav J. Kohout,et al.  Relational-product architectures for information processing , 1985, Inf. Sci..

[8]  Gloria Bordogna,et al.  Modeling Vagueness in Information Retrieval , 2000, ESSIR.

[9]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[10]  Koichi Takeda,et al.  Information retrieval on the web , 2000, CSUR.

[11]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[12]  Ladislav J. Kohout,et al.  An intelligent collision avoidance system for AUVs using fuzzy relational products , 2004, Inf. Sci..

[13]  Yong-Gi Kim,et al.  An obstacle-avoidance technique for autonomous underwater vehicles based on BK-products of fuzzy relation , 2006, Fuzzy Sets Syst..

[14]  Ladislav J. Kohout,et al.  Semantics of implication operators and fuzzy relational products , 1980 .

[15]  Ladislav J. Kohout,et al.  Enhancing Performance of Relational Fuzzy Neural Networks with Square BK-Products , 2006, JCIS.

[16]  Mark Levene,et al.  Search Engines: Information Retrieval in Practice , 2011, Comput. J..

[17]  Elizabeth D. Liddy,et al.  How a Search Engine Works. , 2001 .

[18]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[19]  Ophir Frieder,et al.  Information Retrieval: Algorithms and Heuristics , 1998 .

[20]  J. KohoutDept,et al.  Relational Computations in Medical KBSCLINAID : the means for integrating Interval , Symbolic logic and Neural network techniquesLadislav , 2007 .

[21]  Shyi-Ming Chen,et al.  Document retrieval using knowledge-based fuzzy information retrieval techniques , 1995, IEEE Trans. Syst. Man Cybern..

[22]  William W. L. Cheung,et al.  A Fuzzy Logic Expert System to Estimate Intrinsic Extinction Vulnerabilities of Marine Fishes to Fishing , 2004 .

[23]  Stephen E. Robertson,et al.  Understanding inverse document frequency: on theoretical arguments for IDF , 2004, J. Documentation.

[24]  Elisabeth Rakus-Andersson,et al.  Fuzzy and Rough Techniques in Medical Diagnosis and Medication , 2007, Studies in Fuzziness and Soft Computing.

[25]  Donald H. Kraft,et al.  Fuzzy sets in database and information systems: Status and opportunities , 2005, Fuzzy Sets Syst..

[26]  Etienne Kerre,et al.  Fuzzy techniques in image processing , 2000 .

[27]  Carlos A. Reyes García,et al.  Implementation of a Linguistic Fuzzy Relational Neural Network for Detecting Pathologies by Infant Cry Recognition , 2004, IBERAMIA.