An inverse theorem for the Gowers U^{s+1}[N]-norm

We prove the inverse conjecture for the Gowers U^{s+1}[N]-norm for all s >= 3; this is new for s > 3, and the cases s [-1,1] is a function with || f ||_{U^{s+1}[N]} > \delta then there is a bounded-complexity s-step nilsequence F(g(n)\Gamma) which correlates with f, where the bounds on the complexity and correlation depend only on s and \delta. From previous results, this conjecture implies the Hardy-Littlewood prime tuples conjecture for any linear system of finite complexity.

[1]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[2]  Bryna Kra,et al.  Nonconventional ergodic averages and nilmanifolds , 2005 .

[3]  Tamar Ziegler,et al.  Universal characteristic factors and Furstenberg averages , 2004, math/0403212.

[4]  Shachar Lovett,et al.  Worst Case to Average Case Reductions for Polynomials , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[5]  B. Weiss,et al.  A Mean Ergodic Theorem for 1/NΣNn=1f(Tnx)g(Tn2x) , 1996 .

[6]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.

[7]  Jean Bourgain,et al.  On Triples in Arithmetic Progression , 1999 .

[8]  I. Håland Uniform distribution of generalized polynomials of the product type , 1994 .

[9]  Bryna Kra,et al.  Multiple recurrence and convergence for sequences related to the prime numbers , 2006, math/0607637.

[10]  K. Ribet On ℓ-adic representations attached to modular forms , 1975 .

[11]  J. Bourgain A Tribute to Paul Erdős: On arithmetic progressions in sums of sets of integers , 1990 .

[12]  Ben Green,et al.  Linear equations in primes , 2006, math/0606088.

[13]  Terence Tao,et al.  The inverse conjecture for the Gowers norm over finite fields via the correspondence principle , 2008, 0810.5527.

[14]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[15]  Inger Johanne Haaland Uniform Distribution of Generalized Polynomials , 1993 .

[16]  Bryna Kra,et al.  Convergence of Conze–Lesigne averages , 2001, Ergodic Theory and Dynamical Systems.

[17]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[18]  T. Tao,et al.  The Mobius function is strongly orthogonal to nilsequences , 2012 .

[19]  Bryna Kra,et al.  Uniformity seminorms on ℓ∞ and applications , 2009 .

[20]  A. Leibman Polynomial Sequences in Groups , 1998 .

[21]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[22]  B. Green Arithmetic progressions in sumsets , 2002 .

[23]  Ben Green,et al.  QUADRATIC UNIFORMITY OF THE MOBIUS FUNCTION , 2006, math/0606087.

[24]  A. Leibman Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.

[25]  Ben Green,et al.  An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications , 2010, 1002.2028.

[26]  A. Leibman Polynomial mappings of groups , 2002 .

[27]  Bryna Kra,et al.  Multiple recurrence and nilsequences , 2005 .

[28]  Noga Alon,et al.  Testing Low-Degree Polynomials over GF(2( , 2003, RANDOM-APPROX.

[29]  A. Maass,et al.  Nilsequences and a structure theorem for topological dynamical systems , 2009, Advances in Mathematics.

[30]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS U4-NORM , 2005, Glasgow Mathematical Journal.

[31]  Terence Tao,et al.  John-type theorems for generalized arithmetic progressions and iterated sumsets , 2006 .

[32]  V. Bergelson,et al.  Distribution of values of bounded generalized polynomials , 2007 .

[33]  Ben Green,et al.  The quantitative behaviour of polynomial orbits on nilmanifolds , 2007, 0709.3562.

[34]  A. Leibman A canonical form and the distribution of values of generalized polynomials , 2012 .

[35]  Endre Szemerédi,et al.  A statistical theorem of set addition , 1994, Comb..

[36]  Equations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales , 1993 .

[37]  M. Lazard,et al.  Sur les groupes nilpotents et les anneaux de Lie , 1954 .

[38]  Alex Samorodnitsky,et al.  Low-degree tests at large distances , 2006, STOC '07.