Host metabolic reprogramming of Pseudomonas aeruginosa by phage-based quorum sensing modulation

The Pseudomonas quinolone signal (PQS) is a multifunctional quorum sensing molecule of key importance to the P. aeruginosa metabolism. We here describe that the lytic Pseudomonas bacterial virus LUZ19 targets this population-density-dependent signaling system by expressing quorum sensing-associated acyltransferase (Qst) during early infection. Qst interacts with a key biosynthesis pathway enzyme PqsD, resulting in decreased metabolites levels of PQS and its precursor 2-heptyl-4(1H)-quinolone. The lack of a functional PqsD enzyme impairs the normal LUZ19 infection but is restored by external supplementation of 2-heptyl-4(1H)-quinolone, showing that LUZ19 exploits PQS to successfully achieve its infection. A functional interaction network, which includes enzymes of the central carbon metabolism (CoaC/ThiD) and a novel non-ribosomal peptide synthetase pathway (PA1217), suggests a broader functional context for Qst, which blocks P. aeruginosa cell division. Qst represents an exquisite example of intricate reprogramming of the bacterium, which may be exploited towards antibiotic target discovery for this bacterial pathogen.

[1]  K. Maxwell Phages Tune in to Host Cell Quorum Sensing , 2019, Cell.

[2]  B. Bassler,et al.  A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision , 2019, Cell.

[3]  A. Aertsen,et al.  Screening for Growth-Inhibitory ORFans in Pseudomonas aeruginosa-Infecting Bacteriophages. , 2019, Methods in molecular biology.

[4]  Juanli Cheng,et al.  The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore , 2018, Front. Cell. Infect. Microbiol..

[5]  G. Pessi,et al.  Biosynthesis of fragin is controlled by a novel quorum sensing signal , 2018, Nature Communications.

[6]  R. Lavigne,et al.  Comparative transcriptomics reveals a conserved Bacterial Adaptive Phage Response (BAPR) to viral predation , 2018, bioRxiv.

[7]  A. Gulick Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. , 2017, Natural product reports.

[8]  Katarzyna Danis-Wlodarczyk,et al.  Pseudomonas predators: understanding and exploiting phage–host interactions , 2017, Nature Reviews Microbiology.

[9]  Shuai Le,et al.  Transcriptomic and Metabolomics Profiling of Phage–Host Interactions between Phage PaP1 and Pseudomonas aeruginosa , 2017, Front. Microbiol..

[10]  Shutao Ma,et al.  Recent Advances in the Discovery of PqsD Inhibitors as Antimicrobial Agents , 2017, ChemMedChem.

[11]  Xuying Qin,et al.  Quorum sensing influences phage infection efficiency via affecting cell population and physiological state , 2017, Journal of basic microbiology.

[12]  G. Evans,et al.  Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems , 2016, Molecular cell.

[13]  B. Bassler,et al.  Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system , 2016, Proceedings of the National Academy of Sciences.

[14]  U. Sauer,et al.  High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection , 2016, The ISME Journal.

[15]  M. Voet,et al.  Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome , 2016, eLife.

[16]  Shuai Le,et al.  Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3 , 2016, Scientific Reports.

[17]  Yong-mei Zhang,et al.  Distributed under Creative Commons Cc-by 4.0 the Role of 2,4-dihydroxyquinoline (dhq) in Pseudomonas Aeruginosa Pathogenicity , 2022 .

[18]  Raymond Lo,et al.  Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database , 2015, Nucleic Acids Res..

[19]  A. Aertsen,et al.  Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein , 2015, Front. Microbiol..

[20]  S. Fetzner Quorum quenching enzymes. , 2015, Journal of biotechnology.

[21]  A. Aertsen,et al.  Functional elucidation of antibacterial phage ORFans targeting Pseudomonas aeruginosa , 2014, Cellular microbiology.

[22]  S. Fetzner,et al.  Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43 , 2014, Applied and Environmental Microbiology.

[23]  A. Aertsen,et al.  Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa. , 2014, Journal of proteome research.

[24]  Ruoting Pei,et al.  Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes , 2014, Applied and Environmental Microbiology.

[25]  P. Babbitt,et al.  Mechanistic and Bioinformatic Investigation of a Conserved Active Site Helix in α-Isopropylmalate Synthase from Mycobacterium tuberculosis, a Member of the DRE-TIM Metallolyase Superfamily , 2014, Biochemistry.

[26]  Y. Mandel-Gutfreund,et al.  Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis , 2014, Microbiome.

[27]  A. Kropinski,et al.  What Does the Talking?: Quorum Sensing Signalling Genes Discovered in a Bacteriophage Genome , 2014, PloS one.

[28]  S. Hallam,et al.  Metabolic reprogramming by viruses in the sunlit and dark ocean , 2013, Genome Biology.

[29]  A. Gruber,et al.  The Novel Human Influenza A(H7N9) Virus Is Naturally Adapted to Efficient Growth in Human Lung Tissue , 2013, mBio.

[30]  Sylvain Moineau,et al.  Revenge of the phages: defeating bacterial defences , 2013, Nature Reviews Microbiology.

[31]  Michael P. Storz,et al.  Structure optimization of 2-benzamidobenzoic acids as PqsD inhibitors for Pseudomonas aeruginosa infections and elucidation of binding mode by SPR, STD NMR, and molecular docking. , 2013, Journal of medicinal chemistry.

[32]  P. Williams,et al.  A cell-cell communication signal integrates quorum sensing and stress response. , 2013, Nature chemical biology.

[33]  A. Aertsen,et al.  A Multifaceted Study of Pseudomonas aeruginosa Shutdown by Virulent Podovirus LUZ19 , 2013, mBio.

[34]  S. Svenningsen,et al.  A Quorum-Sensing-Induced Bacteriophage Defense Mechanism , 2013, mBio.

[35]  F. Taddei,et al.  Expression of a Novel P22 ORFan Gene Reveals the Phage Carrier State in Salmonella Typhimurium , 2013, PLoS genetics.

[36]  Michael P. Storz,et al.  Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by development of small-molecule inhibitors. , 2012, Journal of the American Chemical Society.

[37]  L. Lu,et al.  Prediction and Analysis of the Protein Interactome in Pseudomonas aeruginosa to Enable Network-Based Drug Target Selection , 2012, PloS one.

[38]  C. Aldrich,et al.  Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. , 2012, Biochemistry.

[39]  P. Uetz,et al.  Bacteriophage protein-protein interactions. , 2012, Advances in virus research.

[40]  Katherine H. Huang,et al.  Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. , 2011, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Itai Sharon,et al.  Comparative metagenomics of microbial traits within oceanic viral communities , 2011, The ISME Journal.

[42]  Honghai Wang,et al.  Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets? , 2011, International journal of biological sciences.

[43]  L. Mcdaniel,et al.  High Frequency of Horizontal Gene Transfer in the Oceans , 2010, Science.

[44]  R. Lavigne,et al.  Bacteriophages of Pseudomonas. , 2010, Future microbiology.

[45]  S. Prigge,et al.  Lipoic Acid Metabolism in Microbial Pathogens , 2010, Microbiology and Molecular Biology Reviews.

[46]  K. Sivonen,et al.  Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). , 2010, Chemistry & biology.

[47]  H. Krisch,et al.  Isolation and genomic characterization of the first phage infecting Iodobacteria: ϕPLPE, a myovirus having a novel set of features. , 2009, Environmental microbiology reports.

[48]  R. Lavigne,et al.  The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. , 2009, Environmental microbiology.

[49]  G. Volckaert,et al.  Biochemical characterization of malate synthase G of P. aeruginosa , 2009, BMC Biochemistry.

[50]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[51]  M. Snider,et al.  Coenzyme and Prosthetic Group Biosynthesis , 2009 .

[52]  C. Rock,et al.  PqsD Is Responsible for the Synthesis of 2,4-Dihydroxyquinoline, an Extracellular Metabolite Produced by Pseudomonas aeruginosa* , 2008, Journal of Biological Chemistry.

[53]  H. Schweizer,et al.  PBAD-Based Shuttle Vectors for Functional Analysis of Toxic and Highly Regulated Genes in Pseudomonas and Burkholderia spp. and Other Bacteria , 2008, Applied and Environmental Microbiology.

[54]  T. Becker,et al.  The Pseudomonas Quinolone Signal (PQS) Balances Life and Death in Pseudomonas aeruginosa Populations , 2008, PLoS pathogens.

[55]  S. Diggle,et al.  Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. , 2008, Molecular bioSystems.

[56]  C. Suttle Marine viruses — major players in the global ecosystem , 2007, Nature Reviews Microbiology.

[57]  Luke R. Thompson,et al.  Prevalence and Evolution of Core Photosystem II Genes in Marine Cyanobacterial Viruses and Their Hosts , 2006, PLoS biology.

[58]  J. Blanchard,et al.  Kinetic and chemical mechanism of alpha-isopropylmalate synthase from Mycobacterium tuberculosis. , 2006, Biochemistry.

[59]  E. Greenberg,et al.  A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[60]  H. Schweizer,et al.  A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. , 2006, Journal of microbiological methods.

[61]  H. Schweizer,et al.  A Tn7-based broad-range bacterial cloning and expression system , 2005, Nature Methods.

[62]  A. Aertsen,et al.  Biofilm formation and cell‐to‐cell signalling in Gram‐negative bacteria isolated from a food processing environment , 2004, Journal of applied microbiology.

[63]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Cygler,et al.  The final player in the coenzyme A biosynthetic pathway. , 2003, Structure.

[65]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[66]  Fumio Arisaka,et al.  Bacteriophage T4 Genome , 2003, Microbiology and Molecular Biology Reviews.

[67]  David A. D'Argenio,et al.  Autolysis and Autoaggregation in Pseudomonas aeruginosa Colony Morphology Mutants , 2002, Journal of bacteriology.

[68]  C. Blumer,et al.  Regulatory RNA as Mediator in GacA/RsmA-Dependent Global Control of Exoproduct Formation in Pseudomonas fluorescens CHA0 , 2002, Journal of bacteriology.

[69]  A. Rubio,et al.  Reduced Flux through the Purine Biosynthetic Pathway Results in an Increased Requirement for Coenzyme A in Thiamine Synthesis in Salmonella enterica Serovar Typhimurium , 2000, Journal of bacteriology.

[70]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[71]  D. Downs,et al.  Mutations in sdh (succinate dehydrogenase genes) alter the thiamine requirement of Salmonella typhimurium , 1997, Journal of bacteriology.

[72]  P. Seed,et al.  Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[73]  H. Bremer,et al.  Control of the Escherichia coli rrnB P1 promoter strength by ppGpp , 1995, The Journal of Biological Chemistry.

[74]  M. Gambello,et al.  Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression , 1991, Journal of bacteriology.

[75]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[76]  Chunfang ZHANGt Pseudomonas aeruginosa. , 1966, Lancet.