SV40 T-antigen-binding sites within the 5'-flanking regions of human U1 and U2 genes.

[1]  F. Dean,et al.  Binding and unwinding—How T antigen engages the SV40 origin of DNA replication , 1990, Cell.

[2]  N. Hernandez,et al.  A 7 bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter , 1989, Cell.

[3]  M. Baack,et al.  High-affinity SV40 T-antigen binding sites in the human genome. , 1988, Virology.

[4]  P. Tegtmeyer,et al.  The role of operator position in SV40 T-antigen-mediated repression. , 1988, Virology.

[5]  C. Prives,et al.  Simian virus 40 (SV40) T antigen binds specifically to double-stranded DNA but not to single-stranded DNA or DNA/RNA hybrids containing the SV40 regulatory sequences , 1988, Journal of virology.

[6]  J. Manley,et al.  A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. , 1988, Genes & development.

[7]  E. Lund,et al.  The Genes and Transcription of the Major Small Nuclear RNAs , 1988 .

[8]  R. Knippers,et al.  Application of an immunoprecipitation procedure to the study of SV40 tumor antigen interaction with mouse genomic DNA sequences. , 1987, Nucleic acids research.

[9]  P. Tegtmeyer,et al.  The T-antigen-binding domain of the simian virus 40 core origin of replication , 1987, Journal of virology.

[10]  G. Ciliberto,et al.  Properties of a U1 RNA enhancer-like sequence. , 1987, Nucleic acids research.

[11]  R. Burgess,et al.  Functional elements of the human U1 RNA promoter. Identification of five separate regions required for efficient transcription and template competition. , 1987, The Journal of biological chemistry.

[12]  J. Manley,et al.  Factors influencing alternative splice site utilization in vivo , 1987, Molecular and cellular biology.

[13]  E. Lund,et al.  Functional, developmentally expressed genes for mouse U1a and U1b snRNAs contain both conserved and non-conserved transcription signals. , 1986, Nucleic acids research.

[14]  H. E. N. D. Vegvar,et al.  3′ end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters , 1986, Cell.

[15]  A. Weiner,et al.  Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements , 1986, Cell.

[16]  R. Kingston,et al.  Binding of polyomavirus large T antigen to the human hsp70 promoter is not required for trans activation , 1986, Molecular and cellular biology.

[17]  M. Ares,et al.  Human U2 small nuclear RNA genes contain an upstream enhancer. , 1986, The EMBO journal.

[18]  Ellen Fanning,et al.  An altered DNA conformation in origin region I is a determinant for the binding of SV40 large T antigen , 1986, Cell.

[19]  R. Kamen,et al.  Guanine nucleotide contacts within viral DNA sequences bound by polyomavirus large T antigen , 1986, Journal of virology.

[20]  M. DePamphilis,et al.  Replication of SV40 and Polyoma Virus Chromosomes , 1986 .

[21]  J. Yewdell,et al.  Cellular targets for SV40 Large T-antigen , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  J. Manley,et al.  Repression of simian virus 40 early transcription by viral DNA replication in human 293 cells , 1985, Nature.

[23]  P. Tegtmeyer,et al.  Seventeen base pairs of region I encode a novel tripartite binding signal for SV40 T antigen , 1985, Cell.

[24]  J. Manley,et al.  Control of adenovirus late promoter expression in two human cell lines , 1985, Molecular and cellular biology.

[25]  J. Alwine,et al.  Analysis of an activatable promoter: sequences in the simian virus 40 late promoter required for T-antigen-mediated trans activation , 1985, Molecular and cellular biology.

[26]  D. Lane,et al.  An immunoaffinity purification procedure for SV40 large T antigen. , 1985, Virology.

[27]  J. Jiricny,et al.  An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes , 1985, Nature.

[28]  N. Hernandez Formation of the 3′ end of U1 snRNA is directed by a conserved sequence located downstream of the coding region. , 1985, The EMBO journal.

[29]  J. Brady,et al.  trans Activation of the simian virus 40 late transcription unit by T-antigen , 1985, Molecular and cellular biology.

[30]  C. Prives,et al.  Simian virus 40 and polyomavirus large tumor antigens have different requirements for high-affinity sequence-specific DNA binding , 1985, Journal of virology.

[31]  R. Dixon,et al.  Purification of simian virus 40 large T antigen by immunoaffinity chromatography , 1985, Journal of virology.

[32]  R. Burgess,et al.  Synthesis of human U1 RNA. II. Identification of two regions of the promoter essential for transcription initiation at position +1. , 1984, The Journal of biological chemistry.

[33]  U. Pettersson,et al.  Clustered genes for human U2 RNA. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Hassell,et al.  Polyomavirus and simian virus 40 large T antigens bind to common DNA sequences , 1984, Journal of virology.

[35]  J. Alwine,et al.  Activation of the SV40 late promoter: Direct effects of T antigen in the absence of viral DNA replication , 1984, Cell.

[36]  R. Tjian,et al.  Essential contact residues within SV40 large T antigen binding sites I and II identified by alkylation-interference , 1984, Cell.

[37]  W. Marzluff,et al.  Isolation and characterization of two linked mouse U1b small nuclear RNA genes. , 1983, Nucleic acids research.

[38]  Y. Ohshima,et al.  Molecular cloning and characterization of a gene for rat U2 small nuclear RNA. , 1983, Journal of molecular biology.

[39]  Keith C. Norris,et al.  Efficient site-directed mutagenesis by simultaneous use of two primers. , 1983, Nucleic acids research.

[40]  R. Kornberg,et al.  Genes and pseudogenes for mouse U1 and U2 small nuclear RNAs. , 1983, The Journal of biological chemistry.

[41]  R. Tjian,et al.  SV40 T antigen binding site mutations that affect autoregulation , 1983, Cell.

[42]  R. Tjian,et al.  Topography of simian virus 40 A protein-DNA complexes: arrangement of pentanucleotide interaction sites at the origin of replication , 1983, Journal of virology.

[43]  Y. Ohshima,et al.  Structural analysis of gene loci for rat U1 small nuclear RNA. , 1983, Nucleic acids research.

[44]  R. Roeder,et al.  Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. , 1983, Nucleic acids research.

[45]  M. Smith,et al.  Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. , 1983, Methods in enzymology.

[46]  D. DiMaio,et al.  Regulatory mutants of simian virus 40. Effect of mutations at a T antigen binding site on DNA replication and expression of viral genes. , 1982, Journal of molecular biology.

[47]  P. Sharp,et al.  T antigen repression of SV40 early transcription from two promoters , 1981, Cell.

[48]  D. Pim,et al.  Monoclonal antibodies specific for simian virus 40 tumor antigens , 1981, Journal of virology.

[49]  R. McKay Binding of a simian virus 40 T antigen-related protein to DNA. , 1981, Journal of molecular biology.

[50]  R. Myers,et al.  Regulation of simian virus 40 early transcription in vitro by a purified tumor antigen. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Shortle,et al.  Regulatory mutants of simian virus 40: constructed mutants with base substitutions at the origin of DNA replication. , 1979, Journal of molecular biology.

[52]  R. Guilfoyle,et al.  Adenovirus 5 DNA sequences present and RNA sequences transcribed in transformed human embryo kidney cells (HEK-Ad-5 or 293). , 1979, Virology.

[53]  D. Galas,et al.  DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. , 1978, Nucleic acids research.

[54]  S. Reed,et al.  Characterization of the Autoregulation of Simian Virus 40 Gene A , 1977, Journal of virology.

[55]  F. Graham,et al.  Characteristics of a human cell line transformed by DNA from human adenovirus type 5. , 1977, The Journal of general virology.