Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems

Over the last two decades, many Differential Evolution (DE) strategies have been introduced for solving Optimization Problems. Due to the variability of the characteristics in optimization problems, no single DE algorithm performs consistently over a range of problems. In this paper, for a better coverage of problem characteristics, we introduce a DE algorithm framework that uses multiple search operators in each generation. The appropriate mix of the search operators, for any given problem, is determined adaptively. The proposed algorithm has been applied to solve the set of real world numerical optimization problems introduced for a special session of CEC2011.

[1]  Mehmet Fatih Tasgetiren,et al.  An ensemble of differential evolution algorithms for constrained function optimization , 2010, IEEE Congress on Evolutionary Computation.

[2]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[5]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[6]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[7]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[8]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[9]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[10]  Andries Petrus Engelbrecht,et al.  Self-adaptive Differential Evolution , 2005, CIS.

[11]  Ruhul A. Sarker,et al.  A Three-Strategy Based Differential Evolution Algorithm for Constrained Optimization , 2010, ICONIP.

[12]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[13]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[14]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[15]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[16]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[17]  Chuan-Kang Ting,et al.  Varying Number of Difference Vectors in Differential Evolution , 2009, 2009 IEEE Congress on Evolutionary Computation.

[18]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[20]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[21]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[22]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[23]  Ponnuthurai N. Suganthan,et al.  Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems , 2010, IEEE Congress on Evolutionary Computation.

[24]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[25]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[26]  Ruhul A. Sarker,et al.  Multi-operator based evolutionary algorithms for solving constrained optimization problems , 2011, Comput. Oper. Res..

[27]  Janez Brest,et al.  Differential Evolution with Self-adaptation and Local Search for Constrained Multiobjective Optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[28]  P. N. Suganthan,et al.  Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems , 2011 .

[29]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[30]  Karl-Dirk Kammeyer,et al.  Parameter Study for Differential Evolution Using a Power Allocation Problem Including Interference Cancellation , 2006, 2006 IEEE International Conference on Evolutionary Computation.