Additive Manufacturing Using Al-Cu-Mg-Sc-TiB2 Composite Powders to Overcome the Strength–Ductility Trade-Off

[1]  C. L. Leung,et al.  Additive Manufacturing Enabled Synergetic Strengthening of Bimodal Reinforcing Particles for Aluminum Matrix Composites , 2023, SSRN Electronic Journal.

[2]  N. Shamsaei,et al.  Correlation between tensile properties, microstructure, and processing routes of an Al–Cu–Mg–Ag–TiB2 (A205) alloy: Additive manufacturing and casting , 2022, Materials Science and Engineering: A.

[3]  Y. Chiu,et al.  Revealing growth mechanisms of faceted Al2Cu intermetallic compounds via high-speed Synchrotron X-ray tomography , 2022, Acta Materialia.

[4]  A. Pyle,et al.  Author Correction: Visualizing group II intron dynamics between the first and second steps of splicing , 2022, Nature communications.

[5]  G. Leichtfried,et al.  Alloy design strategy for microstructural-tailored scandium-modified aluminium alloys for additive manufacturing , 2022, Scripta Materialia.

[6]  Brendon Waters,et al.  Grain rotation and coupled grain boundary motion in two-dimensional binary hexagonal materials , 2021, Acta Materialia.

[7]  Jingjie Guo,et al.  Selective Laser Melting of high-strength TiB2/AlMgScZr Composites: Microstructure, tensile deformation behavior, and mechanical properties , 2021, Journal of Materials Research and Technology.

[8]  D. Raabe,et al.  Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation , 2021, Materials Today.

[9]  Pan Tan,et al.  Effects of Sc alloying on the evolution of solidification microstructure and formation of W phase in as-cast 2519 aluminum alloys , 2021, Journal of Alloys and Compounds.

[10]  S. Babu,et al.  Towards high-temperature applications of aluminium alloys enabled by additive manufacturing , 2021, International Materials Reviews.

[11]  Y. Liu,et al.  Interaction between nucleant particles and a solid-liquid interface in Al-4.5Cu alloy , 2021, Acta Materialia.

[12]  Zhiguang Zhou,et al.  Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC–TiH2 , 2021 .

[13]  J. Eckert,et al.  Additive Manufacturing of Aluminum‐Based Metal Matrix Composites—A Review , 2021, Advanced Engineering Materials.

[14]  Q. Ramasse,et al.  The nucleation sequence of α-Al on TiB2 particles in Al-Cu alloys , 2021 .

[15]  M. Vedani,et al.  Investigation on two Ti–B-reinforced Al alloys for Laser Powder Bed Fusion , 2021 .

[16]  Peter D. Lee,et al.  Towards understanding grain nucleation under Additive Manufacturing solidification conditions , 2020, Acta Materialia.

[17]  Xiaoming Wang,et al.  Microstructures and mechanical properties of an Al-Cu-Mg-Sc alloy reinforced with in-situ TiB2 particulates , 2020, Materials Science and Engineering: A.

[18]  R. Trivedi,et al.  Progress in modelling solidification microstructures in metals and alloys. Part II: dendrites from 2001 to 2018 , 2020, International Materials Reviews.

[19]  M. Gibson,et al.  Understanding the refinement of grains in laser surface remelted Al–Cu alloys , 2020 .

[20]  Q. Gu,et al.  Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system , 2020 .

[21]  Hao-wei Wang,et al.  Synthesis of nanoscale spherical TiB_2 particles in Al matrix by regulating Sc contents , 2019, Journal of Materials Research.

[22]  R. Misra,et al.  Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy , 2019, Materials Science and Engineering: A.

[23]  R. Trivedi,et al.  Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000 , 2018, International Materials Reviews.

[24]  M. Bermingham,et al.  Grain refinement of laser remelted Al-7Si and 6061 aluminium alloys with Tibor® and scandium additions , 2018, Journal of Manufacturing Processes.

[25]  T. Niendorf,et al.  A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: Microstructure, heat treatment and mechanical properties , 2018 .

[26]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[27]  Xin Liu,et al.  Tailoring in-situ TiB2 particulates in aluminum matrix composites , 2017 .

[28]  T. Pollock,et al.  3D printing of high-strength aluminium alloys , 2017, Nature.

[29]  Jean-Pierre Kruth,et al.  Selective laser melting of nano-TiB 2 decorated AlSi10Mg alloy with high fracture strength and ductility , 2017 .

[30]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[31]  C. Emmelmann,et al.  Additive manufacturing of metals , 2016 .

[32]  Konda Gokuldoss Prashanth,et al.  Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting , 2016 .

[33]  Jie Song,et al.  The Interface of TiB2 and Al3Ti in Molten Aluminum , 2015, Metallurgical and Materials Transactions B.

[34]  Zhiwei Liu,et al.  On the Understanding of Aluminum Grain Refinement by Al-Ti-B Type Master Alloys , 2015, Metallurgical and Materials Transactions B.

[35]  Zhiwei Liu,et al.  Ultrasound assisted salts–metal reaction for synthesizing TiB2 particles at low temperature , 2015 .

[36]  R. Poprawe,et al.  Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting , 2015 .

[37]  J. Lai,et al.  Precipitation strengthening of Al–B4C metal matrix composites alloyed with Sc and Zr , 2013 .

[38]  J. Kruth,et al.  Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder , 2013 .

[39]  M. Rethmeier,et al.  Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal , 2013, Metallurgical and Materials Transactions A.

[40]  J. Kajornchaiyakul,et al.  Grain refinement mechanism in an Al–Si–Mg alloy with scandium , 2012 .

[41]  T. Pollock,et al.  Development of Dendritic Structure in the Liquid-Metal-Cooled, Directional-Solidification Process , 2011 .

[42]  M. R. Toroghinejad,et al.  High-strength and highly-uniform composites produced by compocasting and cold rolling processes , 2011 .

[43]  Evan Ma,et al.  Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation , 2007 .

[44]  Lars Arnberg,et al.  In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy , 2007 .

[45]  Yonghao Zhao,et al.  Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys , 2006 .

[46]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[47]  Xiaochun Li,et al.  Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy , 2004 .

[48]  S. A. Kori,et al.  Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying , 2002 .

[49]  Ø. Grong,et al.  Effect of scandium and titanium–boron on grain refinement and hot cracking of aluminium alloy 7108 , 1999 .

[50]  Ellis,et al.  Microstructural analysis of Al alloys dispersed with TiB2 particulate for MMC applications , 1999, Journal of microscopy.

[51]  J. E. Gruzleski,et al.  Mechanism of grain refinement in aluminium , 1995 .

[52]  D. Eskin,et al.  Precipitation hardening in ternary alloys of the AlScCu and AlScSi systems , 1994 .

[53]  J. Pötschke,et al.  On the behaviour of foreign particles at an advancing solid-liquid interface , 1989 .

[54]  Merton C. Flemings,et al.  Solidification processing of metal-matrix composites , 1988 .

[55]  S. Omenyi,et al.  Thermodynamic aspects of particle engulfment by solidifying melts , 1976 .

[56]  G. Bolling,et al.  A theory for the interaction of particles with a solidifying front , 1971 .

[57]  S. Rhee Wetting of Ceramics by Liquid Aluminum , 1970 .

[58]  D. Uhlmann,et al.  Interaction Between Particles and a Solid‐Liquid Interface , 1964 .

[59]  Claus Emmelmann,et al.  Process and Mechanical Properties: Applicability of a Scandium modified Al-alloy for Laser Additive Manufacturing , 2011 .

[60]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[61]  Pradeep K. Rohatgi,et al.  Metal Matrix Composites , 2020, Composite Materials.

[62]  T. S. Srivatsan,et al.  Rapid solidification processing with specific application to aluminium alloys , 1992 .

[63]  M. Kobashi,et al.  Effects of alloying elements on SiC dispersion in liquid aluminum , 1990 .

[64]  D. G. McCartney Grain refining of aluminium and its alloys using inoculants , 1989 .

[65]  K. Prewo,et al.  On the strength of discontinuous silicon carbide reinforced aluminum composites , 1986 .

[66]  L. Arnberg,et al.  1: Production and properties of master alloys of Al–Ti–B type and their ability to grain refine aluminium , 1982 .