Repetitive response of the Hodgkin-Huxley model for the squid giant axon.

[1]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[2]  H. A. Antosiewicz,et al.  Automatic Computation of Nerve Excitation , 1955 .

[3]  L. Weinberg,et al.  Automatic Feedback Control System Synthesis , 1956 .

[4]  S. Hagiwara,et al.  The critical depolarization for the spike in the squid giant axon. , 1958, The Japanese journal of physiology.

[5]  R. FitzHugh,et al.  Automatic Computation of Nerve Excitation—Detailed Corrections and Additions , 1959 .

[6]  John Clifford West Analytical techniques for non-linear control systems , 1960 .

[7]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[8]  R. FitzHugh,et al.  Theoretical stability properties of a space-clamped axon. , 1962, Biophysical journal.

[9]  D. AGIN,et al.  Hodgkin-Huxley Equations: Logarithmic Relation between Membrane Current and Frequency of Repetitive Activity , 1964, Nature.

[10]  J. Cooley,et al.  Digital computer solutions for excitable membrane models , 1965 .

[11]  A. Vallbo,et al.  ACCOMMODATION IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA. , 1965, Acta physiologica Scandinavica.

[12]  J. Cooley,et al.  Digital computer solutions for excitation and propagation of the nerve impulse. , 1966, Biophysical journal.

[13]  F. M. Snell,et al.  Transfer function analysis of chemical kinetic systems. , 1967, Journal of theoretical biology.