Cyclin D 3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number Citation

Citation Sankaran, V. G., L. S. Ludwig, E. Sicinska, J. Xu, D. E. Bauer, J. C. Eng, H. C. Patterson, et al. “Cyclin D3 Coordinates the Cell Cycle During Differentiation to Regulate Erythrocyte Size and Number.” Genes & Development 26, no. 18 (September 15, 2012): 2075–2087. Copyright © 2012 by Cold Spring Harbor Laboratory Press As Published http://dx.doi.org/10.1101/gad.197020.112 Publisher Cold Spring Harbor Laboratory Press

[1]  SV Subramanian,et al.  Anaemia in low-income and middle-income countries , 2011, The Lancet.

[2]  Manolis Kellis,et al.  Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. , 2011, Genome research.

[3]  K. Siminovitch,et al.  The autoimmune disease–associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness , 2011, Nature Genetics.

[4]  T. Martin,et al.  Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. , 2011, Blood.

[5]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[6]  E. Lander Initial impact of the sequencing of the human genome , 2011, Nature.

[7]  E. Lander,et al.  MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13 , 2011, Proceedings of the National Academy of Sciences.

[8]  H. Lodish,et al.  HIF1 synergizes with glucocorticoids to promote BFU-E progenitor self-renewal , 2011 .

[9]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[10]  Olle Melander,et al.  From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus , 2010, Nature.

[11]  Timothy L Bailey,et al.  A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. , 2010, Genome research.

[12]  Yusuke Nakamura,et al.  Genome-wide association study of hematological and biochemical traits in a Japanese population , 2010, Nature Genetics.

[13]  Yasodha Natkunam,et al.  Characterization of D-Cyclin Proteins in Hematolymphoid Neoplasms: Lack of Specificity of Cyclins D2 and D3 Expression in Lymphoma Subtypes , 2009, Modern Pathology.

[14]  S. Orkin,et al.  interactions and cooperation with SOX 6-globin by BCL 11 A involves long-range γ Transcriptional silencing of Material Supplemental , 2010 .

[15]  Francesca Chiaromonte,et al.  Erythroid GATA 1 function revealed by genome-wide analysis of transcription factor occupancy , histone modifications , and mRNA expression , 2009 .

[16]  Sarah E Medland,et al.  Sequence variants in three loci influence monocyte counts and erythrocyte volume. , 2009, American journal of human genetics.

[17]  Christian Gieger,et al.  A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium , 2009, Nature Genetics.

[18]  Christian Gieger,et al.  Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium , 2009, Nature Genetics.

[19]  M. Barbacid,et al.  Cell cycle, CDKs and cancer: a changing paradigm , 2009, Nature Reviews Cancer.

[20]  Andrew D. Johnson,et al.  SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap , 2008, Bioinform..

[21]  J. Hirschhorn,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Tables S1 to S7 References Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-specific Repressor Bcl11a , 2022 .

[22]  Francis S Collins,et al.  A HapMap harvest of insights into the genetics of common disease. , 2008, The Journal of clinical investigation.

[23]  H. Lodish,et al.  Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2 , 2008, Nature Cell Biology.

[24]  S. Orkin,et al.  Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. , 2007, Genes & development.

[25]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[26]  K. Akashi,et al.  Essential Role for Cyclin D3 in Granulocyte Colony-Stimulating Factor-Driven Expansion of Neutrophil Granulocytes , 2006, Molecular and Cellular Biology.

[27]  P. Sicinski,et al.  A unique function for cyclin D3 in early B cell development , 2006, Nature Immunology.

[28]  Anne E Carpenter,et al.  A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen , 2006, Cell.

[29]  D. W. Fry,et al.  Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. , 2005, Journal of medicinal chemistry.

[30]  James M. Roberts,et al.  Living with or without cyclins and cyclin-dependent kinases. , 2004, Genes & development.

[31]  K. Akashi,et al.  Mouse Development and Cell Proliferation in the Absence of D-Cyclins , 2004, Cell.

[32]  Harvey F Lodish,et al.  Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. , 2003, Blood.

[33]  A. Ferrando,et al.  Requirement for cyclin D3 in lymphocyte development and T cell leukemias. , 2003, Cancer cell.

[34]  D. Rowitch,et al.  Development of mice expressing a single D-type cyclin. , 2002, Genes & development.

[35]  J. Hoffman,et al.  Questions for red blood cell physiologists to ponder in this millenium. , 2001, Blood cells, molecules & diseases.

[36]  M. Dai,et al.  An expansion phase precedes terminal erythroid differentiation of hematopoietic progenitor cells from cord blood in vitro and is associated with up-regulation of cyclin E and cyclin-dependent kinase 2. , 2000, Blood.

[37]  K. Nasmyth,et al.  Terminal differentiation of normal chicken erythroid progenitors: shortening of G1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. , 1995, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[38]  P. Feig,et al.  Inverse changes in erythroid cell volume and number regulate the hematocrit in newborn genetically hypertensive rats. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P M Bennett,et al.  Erythrocyte size, number and haemoglobin content in vertebrates , 1991, British journal of haematology.

[40]  S. Orkin,et al.  Increased γ-globin expression in a nondeletion HPFH mediated by an erythroid-specif ic DNA-binding factor , 1989, Nature.

[41]  D. Nathan Regulation of erythropoiesis. , 1977, The New England journal of medicine.

[42]  S. Ebbe,et al.  REGULATION OF ERYTHROPOIESIS. XX. KINETICS OF RED CELL PRODUCTION * , 1968, Annals of the New York Academy of Sciences.