ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and 8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%, 0.071%^(+0.029%)_(-0.013%), and 0.1392% ± 0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 ± 0.00048) and argument of periapse (ω = 188°.09 ± 0°.39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of another substellar companion in the HAT-P-2 system, which could have caused HAT-P-2b to migrate inward to its present-day orbit via the Kozai mechanism.

[1]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[2]  R. Muller,et al.  Real-time correction of atmospherically degraded telescope images through image sharpening , 1974 .

[3]  C. Pritchet,et al.  On the optical appearance of distant galaxies. , 1981 .

[4]  William E. Harris A COMMENT ON IMAGE DETECTION AND THE DEFINITION OF LIMITING MAGNITUDE , 1990 .

[5]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[6]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[7]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[8]  Francesco Marzari,et al.  Gravitational scattering as a possible origin for giant planets at small stellar distances , 1996, Nature.

[9]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[10]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[11]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[12]  D. S. Acton,et al.  First Light Adaptive Optics Images from the Keck II Telescope: A New Era of High Angular Resolution Imagery , 2000 .

[13]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[14]  J. Jenkins,et al.  Some Tests to Establish Confidence in Planets Discovered by Transit Photometry , 2002 .

[15]  J. Barnes,et al.  Stability of Satellites around Close-in Extrasolar Giant Planets , 2002, astro-ph/0205035.

[16]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[17]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[18]  Jozsef Lazar,et al.  System Description and First Light Curves of the Hungarian Automated Telescope, an Autonomous Observatory for Variability Search , 2002, astro-ph/0206001.

[19]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[20]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[21]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[22]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[23]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[24]  S. T. Megeath,et al.  A Sensitive Search for Variability in Late L Dwarfs: The Quest for Weather , 2005 .

[25]  Dynamic tides in rotating objects: orbital circularization of extrasolar planets for realistic planet models , 2005, astro-ph/0512150.

[26]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[27]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[28]  K. Mighell Stellar photometry and astrometry with discrete point spread functions , 2005, astro-ph/0505455.

[29]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[30]  G. Laughlin,et al.  Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets , 2007, 0711.2106.

[31]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[32]  K. Enya,et al.  Spin-Orbit Alignment for the Eccentric Exoplanet HD 147506b , 2007, 0707.0503.

[33]  D. Queloz,et al.  HAT-P-5b: A Jupiter-like Hot Jupiter Transiting a Bright Star , 2007, 0710.1841.

[34]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[35]  A. Sozzetti,et al.  HD 147506b: A Supermassive Planet in an Eccentric Orbit Transiting a Bright Star , 2007, 0705.0126.

[36]  Avi Shporer,et al.  The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b , 2007, 0707.1908.

[37]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[38]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[39]  The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b , 2008, 0804.4475.

[40]  Nicolas B. Cowan,et al.  Inverting Phase Functions to Map Exoplanets , 2008, 0803.3622.

[41]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses , 2008, 0802.3764.

[42]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[43]  D. Fabrycky Radiative Thrusters on Close-in Extrasolar Planets , 2008, 0803.1839.

[44]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[45]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[46]  G. Benedict,et al.  A Hubble Space Telescope Transit Light Curve For GJ 436B , 2008, 0806.0851.

[47]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[48]  F. Rasio,et al.  On the Origins of Eccentric Close-In Planets , 2008, Proceedings of the International Astronomical Union.

[49]  A. Pál Properties of analytic transit light-curve models , 2008 .

[50]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[51]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .

[52]  C. Moutou,et al.  Refined parameters and spectroscopic transit of the super-massive planet HD 147506b , 2007, 0707.0679.

[53]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[54]  J. Valenti,et al.  THE NASA-UC ETA-EARTH PROGRAM. I. A SUPER-EARTH ORBITING HD 7924 , 2009, 0901.4394.

[55]  Konstantin Batygin,et al.  DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS , 2009, 0907.5019.

[56]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[57]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.

[58]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[59]  K. Menou,et al.  Atmospheric Circulation of Exoplanets , 2009, 0911.3170.

[60]  David M. Kipping Transit timing effects due to an exomoon , 2009 .

[61]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[62]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[63]  J. Winn Exoplanet Transits and Occultations , 2010 .

[64]  N. Iro,et al.  A TIME-DEPENDENT RADIATIVE MODEL FOR THE ATMOSPHERE OF THE ECCENTRIC EXOPLANETS , 2010, 1001.1171.

[65]  S. Kane,et al.  PHOTOMETRIC PHASE VARIATIONS OF LONG-PERIOD ECCENTRIC PLANETS , 2010, 1009.4931.

[66]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[67]  R. Paul Butler,et al.  Refined stellar, orbital and planetary parameters of the eccentric HAT‐P‐2 planetary system , 2009, 0908.1705.

[68]  Drake Deming,et al.  A Search for a Sub-Earth-Sized Companion to GJ 436 and a Novel Method to Calibrate Warm Spitzer IRAC Observations , 2010, 1009.0755.

[69]  M. Marley,et al.  ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b , 2010, 1007.2942.

[70]  David K. Sing,et al.  Stellar limb-darkening coefficients for CoRot and Kepler , 2009, 0912.2274.

[71]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[72]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[73]  E. Agol,et al.  SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM SPITZER , 2010, 1011.4066.

[74]  Nicolas B. Cowan,et al.  A MODEL FOR THERMAL PHASE VARIATIONS OF CIRCULAR AND ECCENTRIC EXOPLANETS , 2010, 1011.0428.

[75]  Y. Lithwick,et al.  SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS , 2010, 1012.3475.

[76]  Sara Seager,et al.  THE HIGH ALBEDO OF THE HOT JUPITER KEPLER-7 b , 2011, 1105.5143.

[77]  Dorian S. Abbot,et al.  THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING , 2012, 1205.5034.

[78]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[79]  Nikole K. Lewis,et al.  WARM SPITZER OBSERVATIONS OF THREE HOT EXOPLANETS: XO-4b, HAT-P-6b, AND HAT-P-8b , 2012 .

[80]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[81]  J. Barnes,et al.  OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR–PLANET–MOON SYSTEM , 2012, 1206.0334.

[82]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[83]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[84]  Nikole K. Lewis,et al.  CONSTRAINTS ON THE ATMOSPHERIC CIRCULATION AND VARIABILITY OF THE ECCENTRIC HOT JUPITER XO-3b , 2014, 1407.1313.