Dirac structures in nonequilibrium thermodynamics

Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169–193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of t...

[1]  Bernhard Maschke,et al.  An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes , 2007 .

[2]  Ch. Gruber,et al.  On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states , 1999 .

[3]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[4]  A Katchalsky,et al.  Network thermodynamics: dynamic modelling of biophysical systems , 1973, Quarterly Reviews of Biophysics.

[5]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .

[6]  C. Carathéodory Untersuchungen über die Grundlagen der Thermodynamik , 1909 .

[7]  J. Marsden,et al.  Dirac structures in Lagrangian mechanics Part II: Variational structures , 2006 .

[8]  W. M. Tulczyjew The Legendre transformation , 1977 .

[9]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[10]  Bernhard Maschke,et al.  Mathematical Modeling of Constrained Hamiltonian Systems , 1995 .

[11]  Hiroaki Yoshimura,et al.  A free energy Lagrangian variational formulation of the Navier–Stokes–Fourier system , 2019, International Journal of Geometric Methods in Modern Physics.

[12]  Robert Hermann,et al.  Geometry, physics, and systems , 1973 .

[13]  On the adiabatic perturbation theory for systems with impacts , 2005, math/0503705.

[14]  Franccois Gay-Balmaz,et al.  Variational discretization of the nonequilibrium thermodynamics of simple systems , 2017, 1702.02594.

[15]  Paul Wright A simple piston problem in one dimension , 2006, math/0605458.

[16]  François Gay-Balmaz,et al.  A Lagrangian variational formulation for nonequilibrium thermodynamics , 2018 .

[17]  H. Yoshimura,et al.  A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems , 2017 .

[18]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  François Gay-Balmaz,et al.  A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems , 2017 .

[20]  Lagrangian systems with higher order constraints , 2007 .

[21]  R. MrugaŁa,et al.  Geometrical formulation of equilibrium phenomenological thermodynamics , 1978 .

[22]  Y. Sinai Dynamics of a heavy particle surrounded by a finite number of light particles , 1999 .

[23]  J. Marsden,et al.  Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems , 2006 .

[24]  Charles-Michel Marle,et al.  Various approaches to conservative and nonconservative nonholonomic systems , 1998 .

[25]  Irene Dorfman,et al.  Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .

[26]  Alberto Ibort,et al.  A generalization of Chetaev’s principle for a class of higher order nonholonomic constraints , 2004 .

[27]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[28]  Peter Salamon,et al.  Contact structure in thermodynamic theory , 1991 .

[29]  H. Janyszek,et al.  Geometrical structure of the state space in classical statistical and phenomenological thermodynamics , 1989 .

[30]  Christian Gruber,et al.  Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston , 1999 .