Additive-driven assembly of block copolymer-nanoparticle hybrid materials for solution processable floating gate memory.

Floating gate memory devices were fabricated using well-ordered gold nanoparticle/block copolymer hybrid films as the charge trapping layers, SiO(2) as the dielectric layer, and poly(3-hexylthiophene) as the semiconductor layer. The charge trapping layer was prepared via self-assembly. The addition of Au nanoparticles that selectively hydrogen bond with pyridine in a poly(styrene-b-2-vinyl pyridine) block copolymer yields well-ordered hybrid materials at Au nanoparticle loadings up to 40 wt %. The characteristics of the memory window were tuned by simple control of the Au nanoparticle concentration. This approach enables the fabrication of well-ordered charge storage layers by solution processing, which is extendable for the fabrications of large area and high density devices via roll-to-roll processing.

[1]  Jang-Sik Lee,et al.  Flexible organic transistor memory devices. , 2010, Nano letters.

[2]  Alberto Salleo,et al.  Room‐Temperature Fabrication of Ultrathin Oxide Gate Dielectrics for Low‐Voltage Operation of Organic Field‐Effect Transistors , 2011, Advanced materials.

[3]  Ananth Dodabalapur,et al.  Non‐Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Self‐Assembled Block Copolymer , 2008 .

[4]  Anna C Balazs,et al.  Entropically driven formation of hierarchically ordered nanocomposites. , 2002, Physical review letters.

[5]  E. Thomas,et al.  Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials , 2005, Advanced materials.

[6]  A. Balazs,et al.  Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures: Simulation and Theory , 2000 .

[7]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[8]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[9]  F. Caruso,et al.  Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. , 2007, Nature nanotechnology.

[10]  Yong-Young Noh,et al.  Controllable Shifts in Threshold Voltage of Top‐Gate Polymer Field‐Effect Transistors for Applications in Organic Nano Floating Gate Memory , 2010 .

[11]  S. Agarwal,et al.  Well Ordered Polymer Melts from Blends of Disordered Triblock Copolymer Surfactants and Functional Homopolymers , 2008 .

[12]  Piero Olivo,et al.  Flash memory cells-an overview , 1997, Proc. IEEE.

[13]  K. Binder Phase transitions in polymer blends and block copolymer melts: Some recent developments , 1994 .

[14]  Eric K. Lin,et al.  Well-Ordered Polymer Melts with 5 nm Lamellar Domains from Blends of a Disordered Block Copolymer and a Selectively Associating Homopolymer of Low or High Molar Mass , 2008 .

[15]  K. Hashimoto,et al.  Enhanced charge transport in polymer thin-film transistors prepared by contact film transfer method. , 2009, ACS applied materials & interfaces.

[16]  Vikram K. Daga,et al.  Nanoparticle-driven assembly of block copolymers: a simple route to ordered hybrid materials. , 2011, Journal of the American Chemical Society.

[17]  T. Emrick,et al.  Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. , 2006, Journal of the American Chemical Society.

[18]  Soo-Jin Kim,et al.  Organic-Transistor-Based Nano-Floating-Gate Memory Devices Having Multistack Charge-Trapping Layers , 2010, IEEE Electron Device Letters.

[19]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[20]  Anna C. Balazs,et al.  Nanoparticle Polymer Composites: Where Two Small Worlds Meet , 2006, Science.

[21]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[22]  Todd Emrick,et al.  Self-directed self-assembly of nanoparticle/copolymer mixtures , 2005, Nature.

[23]  Bumjoon J. Kim,et al.  Effect of Areal Chain Density on the Location of Polymer-Modified Gold Nanoparticles in a Block Copolymer Template , 2006 .

[24]  Nripan Mathews,et al.  Towards printable organic thin film transistor based flash memory devices , 2011 .

[25]  Wei Lin Leong,et al.  Micellar poly(styrene-b-4-vinylpyridine)-nanoparticle hybrid system for non-volatile organic transistor memory , 2009 .

[26]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[27]  Christopher J. Kiely,et al.  Synthesis and reactions of functionalised gold nanoparticles , 1995 .

[28]  Bumjoon J. Kim,et al.  Nanoparticle‐Induced Phase Transitions in Diblock‐Copolymer Films , 2005 .

[29]  Bumjoon J. Kim,et al.  Control of nanoparticle location in block copolymers. , 2005, Journal of the American Chemical Society.

[30]  Bumjoon J. Kim,et al.  Distribution of Nanoparticles in Lamellar Domains of Block Copolymers , 2007 .

[31]  Soo-Jin Park,et al.  Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films , 2008 .

[32]  Kazuhito Hashimoto,et al.  Bilayer ambipolar organic thin-film transistors and inverters prepared by the contact-film-transfer method. , 2009, ACS applied materials & interfaces.

[33]  Sol M Gruner,et al.  Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly , 2008, Science.

[34]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[35]  Vikram K. Daga,et al.  Hydrogen-Bond-Mediated Phase Behavior of Complexes of Small Molecule Additives with Poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) Triblock Copolymer Surfactants , 2010 .

[36]  Ting Xu,et al.  Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. , 2009, Nature materials.

[37]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[38]  Barbara Stadlober,et al.  Low‐Voltage Organic Thin‐Film Transistors with High‐k Nanocomposite Gate Dielectrics for Flexible Electronics and Optothermal Sensors , 2007 .