Convergence and supercloseness of a finite element method for a two-parameter singularly perturbed problem on Shishkin triangular mesh

[1]  Jin Zhang,et al.  Convergence and Supercloseness in a Balanced Norm of Finite Element Methods on Bakhvalov-Type Meshes for Reaction-Diffusion Problems , 2020, Journal of Scientific Computing.

[2]  M. Stynes,et al.  Supercloseness of continuous interior penalty method for convection–diffusion problems with characteristic layers , 2017 .

[3]  P. Zhu,et al.  Supercloseness Result of Higher Order FEM/LDG Coupled Method for Solving Singularly Perturbed Problem on S-Type Mesh , 2014 .

[4]  Min Yang,et al.  Optimal Order L2 Error Estimate of SDFEM on Shishkin Triangular Meshes for Singularly Perturbed Convection-Diffusion Equations , 2016, SIAM J. Numer. Anal..

[5]  Martin Stynes,et al.  A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem☆ , 1997 .

[6]  Torsten Linß,et al.  Asymptotic Analysis and Shishkin-Type Decomposition for an Elliptic Convection–Diffusion Problem , 2001 .

[7]  Lutz Tobiska,et al.  The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..

[9]  Roos,et al.  Uniform Superconvergence of a Finite Element Method with Edge Stabilization for Convection-Diffusion Problems , 2009 .

[10]  Xiaowei Liu,et al.  Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers , 2017, Comput. Math. Appl..

[11]  Jin Zhang,et al.  Finite element method on a Bakhvalov-type mesh for a singularly perturbed problem with two parameters , 2020, ArXiv.

[12]  H. Roos,et al.  An elliptic singularly perturbed problem with two parameters II , 2008 .

[13]  Jin Zhang,et al.  High-order finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion problem with two parameters , 2021, Appl. Math. Comput..

[14]  Martin Stynes,et al.  Pointwise Error Estimates for a Streamline Diffusion Scheme on a Shishkin Mesh for a Convection-Diff , 1995 .

[15]  S. Franz,et al.  Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection–diffusion problem with characteristic layers , 2008 .

[16]  H. Zarin,et al.  Superconvergence analysis of a finite element method for a two-parameter singularly perturbed problem , 2009 .

[17]  Jin Zhang,et al.  Supercloseness of the continuous interior penalty method for singularly perturbed problems in 1D: Vertex-cell interpolation , 2018 .

[18]  M. Stynes,et al.  Supercloseness of edge stabilization on Shishkin rectangular meshes for convection–diffusion problems with exponential layers , 2018 .

[19]  Xiaowei Liu,et al.  Supercloseness of Continuous Interior Penalty Methods on Shishkin Triangular Meshes and Hybrid Meshes for Singularly Perturbed Problems with Characteristic Layers , 2018, J. Sci. Comput..

[20]  Xiaowei Liu,et al.  Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers , 2016, Advances in Computational Mathematics.

[21]  Xiaowei Liu,et al.  Supercloseness of linear finite element method on Bakhvalov-type meshes for singularly perturbed convection-diffusion equation in 1D , 2021, Appl. Math. Lett..