Resource assignment algorithms for vehicular clouds

In this thesis, we study the task scheduling problem in vehicular clouds. It falls in the category of unrelated parallel machine scheduling problems. Resource assignment in vehicular clouds must deal with the transient nature of the cloud resources and a relaxed definition of non-preemptive tasks. Despite a rich literature in machine scheduling and grid computing, the resource assignment problem in vehicular clouds has not been examined yet. We show that even the problem of finding a minimum cost schedule for a single task over unrelated machines is NP-hard. We then provide a fully polynomial time approximation scheme and a greedy approximation for scheduling a single task. We extend these algorithms to the case of scheduling n tasks. We validate our algorithms through extensive simulations that use synthetically generated data as well as real data extracted from vehicle mobility and grid computing workload traces. Our contributions are, to the best of our knowledge, the first quantitative analysis of the computational power of vehicular clouds.

[1]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[2]  Peter Brucker,et al.  Classification of Scheduling Problems , 1995 .

[3]  Mihalis Yannakakis,et al.  Scheduling Interval-Ordered Tasks , 1979, SIAM J. Comput..

[4]  Antonio Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[5]  Hussein Zedan,et al.  A comprehensive survey on vehicular Ad Hoc network , 2014, J. Netw. Comput. Appl..

[6]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[7]  Oscar H. Ibarra,et al.  Bounds for LPT Schedules on Uniform Processors , 1977, SIAM J. Comput..

[8]  Silvia Giordano,et al.  The Next Paradigm Shift: From Vehicular Networks to Vehicular Clouds , 2013 .

[9]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[10]  E. L. Lawler,et al.  Recent Results in the Theory of Machine Scheduling , 1982, ISMP.

[11]  Eylem Ekici,et al.  Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and Solutions , 2011, IEEE Communications Surveys & Tutorials.

[12]  Joseph Y.-T. Leung,et al.  Minimizing total completion time on uniform machines with deadline constraints , 2006, TALG.

[13]  Hao Liang,et al.  Optimal Workload Allocation in Fog-Cloud Computing Toward Balanced Delay and Power Consumption , 2016, IEEE Internet of Things Journal.

[14]  Michael Pinedo,et al.  Current trends in deterministic scheduling , 1997, Ann. Oper. Res..

[15]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[16]  Iordanis Koutsopoulos,et al.  Streaming big data meets backpressure in distributed network computation , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[17]  Hossam S. Hassanein,et al.  Vehicle as a resource (VaaR) , 2014, IEEE Network.

[18]  Matthias Grossglauser,et al.  CRAWDAD dataset epfl/mobility (v.2009-02-24) , 2009 .

[19]  J. B. G. Frenk,et al.  Heuristic for the 0-1 Min-Knapsack Problem , 1991, Acta Cybern..

[20]  Imrich Chlamtac,et al.  Internet of things: Vision, applications and research challenges , 2012, Ad Hoc Networks.

[21]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[22]  Mohammad Tauhidul Islam Approximation algorithms for minimum knapsack problem , 2009 .

[23]  Stephan Olariu,et al.  Towards autonomous vehicular clouds , 2011, EAI Endorsed Trans. Mob. Commun. Appl..

[24]  P. Mell,et al.  The NIST Definition of Cloud Computing , 2011 .

[25]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[26]  H. Kellerer,et al.  The Multiple-Choice Knapsack Problem , 2004 .

[27]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[28]  Jeffrey D. Ullman,et al.  NP-Complete Scheduling Problems , 1975, J. Comput. Syst. Sci..

[29]  Eugene Levner,et al.  Computational Complexity of Approximation Algorithms for Combinatorial Problems , 1979, MFCS.

[30]  Günter Schmidt,et al.  Scheduling with limited machine availability , 2000, Eur. J. Oper. Res..

[31]  Ellis Horowitz,et al.  Exact and Approximate Algorithms for Scheduling Nonidentical Processors , 1976, JACM.

[32]  Stephan Olariu,et al.  Taking VANET to the clouds , 2010, Int. J. Pervasive Comput. Commun..

[33]  Gongjun Yan,et al.  Datacenter at the Airport: Reasoning about Time-Dependent Parking Lot Occupancy , 2012, IEEE Transactions on Parallel and Distributed Systems.

[34]  Selim G. Akl,et al.  Scheduling Algorithms for Grid Computing: State of the Art and Open Problems , 2006 .

[35]  Rongxing Lu,et al.  Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing , 2015, 2015 IEEE International Conference on Communications (ICC).

[36]  Rajkumar Buyya,et al.  A survey on vehicular cloud computing , 2014, J. Netw. Comput. Appl..

[37]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[38]  Hannes Hartenstein,et al.  A tutorial survey on vehicular ad hoc networks , 2008, IEEE Communications Magazine.

[39]  Sherin Abdelhamid,et al.  Towards Provisioning Vehicle-Based Information Services , 2014 .