Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis

[1]  E. Amaya,et al.  Ca2+-Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle , 2017, bioRxiv.

[2]  E. Abraham,et al.  Metabolic characterization and RNA profiling reveal glycolytic dependence of profibrotic phenotype of alveolar macrophages in lung fibrosis. , 2017, American journal of physiology. Lung cellular and molecular physiology.

[3]  A. Terrin,et al.  Increased mitochondrial calcium uniporter in adipocytes underlies mitochondrial alterations associated with insulin resistance. , 2017, American journal of physiology. Endocrinology and metabolism.

[4]  T. Gibson,et al.  Metabolic shifts in residual breast cancer drive tumor recurrence , 2017, The Journal of clinical investigation.

[5]  A. Carter,et al.  Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization , 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  A. Hayen,et al.  Baseline characteristics of idiopathic pulmonary fibrosis: analysis from the Australian Idiopathic Pulmonary Fibrosis Registry , 2017, European Respiratory Journal.

[7]  F. Cividini,et al.  Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. , 2016, American journal of physiology. Cell physiology.

[8]  D. Raible,et al.  Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. , 2016, The Journal of clinical investigation.

[9]  A. Rosato,et al.  The mitochondrial calcium uniporter regulates breast cancer progression via HIF‐1α , 2016, EMBO molecular medicine.

[10]  A. Ryan,et al.  Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis. , 2016, Immunity.

[11]  C. Coarfa,et al.  Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. , 2016, Cell reports.

[12]  Brittany Anderton,et al.  Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer , 2016, Nature Medicine.

[13]  N. Kneteman,et al.  Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus* , 2015, The Journal of Biological Chemistry.

[14]  Mark E. Anderson,et al.  Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart , 2015, Proceedings of the National Academy of Sciences.

[15]  R. Hubbard,et al.  Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review , 2015, European Respiratory Journal.

[16]  A. Ryan,et al.  Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure , 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  G. Lanfranchi,et al.  The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. , 2015, Cell reports.

[18]  D. Hall,et al.  The mitochondrial uniporter controls fight or flight heart rate increases , 2015, Nature Communications.

[19]  A. Azuma,et al.  A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis , 2015 .

[20]  Kumar Sharma,et al.  Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development , 2014, Nature Medicine.

[21]  C. Hang,et al.  Role of Mitochondrial Calcium Uniporter in Early Brain Injury After Experimental Subarachnoid Hemorrhage , 2014, Molecular Neurobiology.

[22]  M. Ciriolo,et al.  PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis , 2014, Cell Death and Disease.

[23]  A. Ryan,et al.  Asbestos-induced Disruption of Calcium Homeostasis Induces Endoplasmic Reticulum Stress in Macrophages* , 2014, The Journal of Biological Chemistry.

[24]  Maxim N. Artyomov,et al.  Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation , 2014, Nature Immunology.

[25]  Augustine S. Lee,et al.  The burden of idiopathic pulmonary fibrosis: an unmet public health need. , 2014, Respiratory medicine.

[26]  R. Sussman,et al.  A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. , 2014, The New England journal of medicine.

[27]  H. Collard,et al.  Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. , 2014, The New England journal of medicine.

[28]  C. Neeley,et al.  Mitochondrial Matrix Ca2+ Accumulation Regulates Cytosolic NAD+/NADH Metabolism, Protein Acetylation, and Sirtuin Expression , 2014, Molecular and Cellular Biology.

[29]  Mark E. Anderson,et al.  Mitochondrial Calcium Uniporter Activity Is Dispensable for MDA-MB-231 Breast Carcinoma Cell Survival , 2014, PloS one.

[30]  Robert S. Balaban,et al.  The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU) , 2013, Nature Cell Biology.

[31]  A. Ryan,et al.  Accelerated Development of Pulmonary Fibrosis via Cu,Zn-superoxide Dismutase-induced Alternative Activation of Macrophages* , 2013, The Journal of Biological Chemistry.

[32]  M. Ravier,et al.  The Mitochondrial Ca2+ Uniporter MCU Is Essential for Glucose-Induced ATP Increases in Pancreatic β-Cells , 2012, PloS one.

[33]  C. Hoppel,et al.  Oxidation of Fatty Acids Is the Source of Increased Mitochondrial Reactive Oxygen Species Production in Kidney Cortical Tubules in Early Diabetes , 2012, Diabetes.

[34]  G. V. D. van der Windt,et al.  Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. , 2012, Immunity.

[35]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[36]  A. Ryan,et al.  Mitochondrial Rac1 GTPase Import and Electron Transfer from Cytochrome c Are Required for Pulmonary Fibrosis* , 2011, The Journal of Biological Chemistry.

[37]  Michael J. Cronce,et al.  Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition , 2011, Proceedings of the National Academy of Sciences.

[38]  T. Mak,et al.  ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. , 2011, Molecular cell.

[39]  C. Hoppel,et al.  Mitochondrial Carnitine Palmitoyltransferase 1a (CPT1a) Is Part of an Outer Membrane Fatty Acid Transfer Complex* , 2011, The Journal of Biological Chemistry.

[40]  R. Chambers,et al.  Novel therapeutic approaches for pulmonary fibrosis , 2011, British journal of pharmacology.

[41]  A. Chawla,et al.  Alternative macrophage activation and metabolism. , 2011, Annual review of pathology.

[42]  H. Gerstein,et al.  Establishing a relationship between prolactin and altered fatty acid β-Oxidation via carnitine palmitoyl transferase 1 in breast cancer cells , 2011, BMC Cancer.

[43]  Daniel Rico,et al.  Substrate Fate in Activated Macrophages: A Comparison between Innate, Classic, and Alternative Activation , 2010, The Journal of Immunology.

[44]  D. James,et al.  Acute or chronic upregulation of mitochondrial fatty acid oxidation has no net effect on whole-body energy expenditure or adiposity. , 2010, Cell metabolism.

[45]  D. Hood,et al.  Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. , 2009, American journal of physiology. Cell physiology.

[46]  Jiandie D. Lin,et al.  Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators , 2006, Cell.

[47]  G. Oster,et al.  Incidence and prevalence of idiopathic pulmonary fibrosis. , 2006, American journal of respiratory and critical care medicine.

[48]  R. Hubbard,et al.  Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK , 2006, Thorax.

[49]  S. Cho,et al.  Positive regulation of hepatic carnitine palmitoyl transferase 1A (CPT1A) activities by soy isoflavones and L–carnitine , 2006, European journal of nutrition.

[50]  W. Janssen,et al.  Oxidants Selectively Reverse TGF-β Suppression of Proinflammatory Mediator Production1 , 2006, The Journal of Immunology.

[51]  Ze'ev Ronai,et al.  ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. , 2005, Molecular cell.

[52]  C. Gumbs,et al.  Exercise Stimulates Pgc-1α Transcription in Skeletal Muscle through Activation of the p38 MAPK Pathway* , 2005, Journal of Biological Chemistry.

[53]  E. Park,et al.  Peroxisomal Proliferator-activated Receptor-γ Coactivator-1α (PGC-1α) Enhances the Thyroid Hormone Induction of Carnitine Palmitoyltransferase I (CPT-Iα)* , 2004, Journal of Biological Chemistry.

[54]  J. Peters,et al.  Peroxisome proliferator‐activated receptor α protects against alcohol‐induced liver damage , 2004 .

[55]  J. Peters,et al.  Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. , 2004, Hepatology.

[56]  E. Park,et al.  Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). , 2004, The Journal of biological chemistry.

[57]  N. Parinandi,et al.  Redox regulation of reactive oxygen species-induced p38 MAP kinase activation and barrier dysfunction in lung microvascular endothelial cells. , 2003, Antioxidants & redox signaling.

[58]  B. Brewer,et al.  Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. , 2003, The Journal of clinical investigation.

[59]  S. Goya,et al.  A p38 MAPK inhibitor, FR-167653, ameliorates murine bleomycin-induced pulmonary fibrosis. , 2002, American journal of physiology. Lung cellular and molecular physiology.

[60]  Huasheng Lu,et al.  Hypoxia-inducible Factor 1 Activation by Aerobic Glycolysis Implicates the Warburg Effect in Carcinogenesis* , 2002, The Journal of Biological Chemistry.

[61]  H. Karlic,et al.  Dietary L-carnitine Stimulates Carnitine Acyltransferases in the Liver of Aged Rats , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[62]  S. Goya,et al.  A p 38 MAPK inhibitor , FR-167653 , ameliorates murine bleomycin-induced pulmonary fibrosis , 2002 .

[63]  Jiandie D. Lin,et al.  Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. , 2001, Molecular cell.

[64]  Z. Ronai,et al.  Stability of the ATF2 Transcription Factor Is Regulated by Phosphorylation and Dephosphorylation* , 2000, The Journal of Biological Chemistry.

[65]  S. Chirala,et al.  The subcellular localization of acetyl-CoA carboxylase 2. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Davis,et al.  MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway , 1996, Molecular and cellular biology.

[67]  Jiahuai Han,et al.  Pro-inflammatory Cytokines and Environmental Stress Cause p38 Mitogen-activated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and Threonine (*) , 1995, The Journal of Biological Chemistry.

[68]  G. Lopaschuk,et al.  Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. , 1994, The American journal of physiology.

[69]  R L Wahl,et al.  Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. , 1993, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.