Stein’s method and Normal approximation of Poisson functionals

We combine Stein's method with a version of Malliavin calculus on the Poisson space. As a result, we obtain explicit Berry-Esseen bounds in Central limit theorems (CLTs) involving multiple Wiener-Ito integrals with respect to a general Poisson measure. We provide several applications to CLTs related to Ornstein-Uhlenbeck Levy processes.

[1]  Igor Prunster,et al.  ASYMPTOTICS FOR POSTERIOR HAZARDS , 2009, 0908.1882.

[2]  Gesine Reinert,et al.  Second order Poincaré inequalities and CLTs on Wiener space , 2008 .

[3]  M. Taqqu,et al.  Moments, cumulants and diagram formulae for non-linear functionals of random measures , 2008, 0811.1726.

[4]  M. Taqqu,et al.  Central limit theorems for double Poisson integrals , 2008, 0810.4432.

[5]  Anthony R'eveillac,et al.  Multivariate normal approximation using Stein's method and Malliavin calculus , 2008, 0804.1889.

[6]  Limit theorems for multiple stochastic integrals , 2008 .

[7]  G. Peccati,et al.  Stein’s method on Wiener chaos , 2007, 0712.2940.

[8]  M. Taqqu,et al.  Stable convergence of generalized $L^2$ stochastic integrals and the principle of conditioning , 2007 .

[9]  D. Nualart,et al.  Central limit theorems for multiple stochastic integrals and Malliavin calculus , 2007, math/0703240.

[10]  F. Utzet,et al.  Canonical Lévy process and Malliavin calculus , 2007 .

[11]  Igor Prunster,et al.  Linear and quadratic functionals of random hazard rates: An asymptotic analysis , 2006, math/0611652.

[12]  S. Chatterjee A NEW METHOD OF NORMAL APPROXIMATION , 2006, math/0611213.

[13]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[14]  A Semi-parametric Bayesian Analysis of Survival Data Based on Lévy-driven Processes , 2005, Lifetime data analysis.

[15]  G. Reinert Three general approaches to Stein's method , 2005 .

[16]  D. Nualart,et al.  Central limit theorems for sequences of multiple stochastic integrals , 2005, math/0503598.

[17]  Louis H. Y. Chen,et al.  Stein's method for normal approximation , 2005 .

[18]  G. Peccati,et al.  Gaussian Limits for Vector-valued Multiple Stochastic Integrals , 2005 .

[19]  Jorge A. León,et al.  On Lévy processes, Malliavin calculus and market models with jumps , 2002, Finance Stochastics.

[20]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[21]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[22]  J. Picard Formules de dualité sur l'espace de Poisson , 1996 .

[23]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[24]  X. Xue On the principle of conditioning and convergence to mixtures of distributions for sums of dependent random variables , 1991 .

[25]  D. Nualart,et al.  Anticipative calculus for the Poisson process based on the Fock space , 1990 .

[26]  C. Stein Approximate computation of expectations , 1986 .

[27]  D. Surgailis On multiple Poisson stochastic integrals and associated Markov semigroups , 1984 .

[28]  A. Skorohod,et al.  Extended stochastic integrals , 1975 .

[29]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[30]  Kiyosi Itô,et al.  SPECTRAL TYPE OF THE SHIFT TRANSFORMATION OF DIFFERENTIAL PROCESSES WITH STATIONARY INCREMENTS( , 1956 .