Stereo vision specific models for particle filter-based SLAM

This work addresses the SLAM problem for stereo vision systems under the unified formulation of particle filter methods. In contrast to most existing approaches to visual SLAM, the present method does not rely on restrictive smooth camera motion models, but on computing incremental 6-DoF pose differences from the image flow through a probabilistic visual odometry method. Moreover, our observation model, which considers both the 3D positions and the SIFT descriptors of the landmarks, avoids explicit data association between the observations and the map by marginalizing the observation likelihood over all the possible associations. We have experimentally validated our research with two experiments in indoor scenarios.

[1]  Arturo Gil,et al.  Evaluation of interest point detectors for Visual SLAM , 2007 .

[2]  Ashutosh Saxena,et al.  High speed obstacle avoidance using monocular vision and reinforcement learning , 2005, ICML.

[3]  John R. Hershey,et al.  Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[4]  Yolanda González Cid,et al.  Real-time 3d SLAM with wide-angle vision , 2004 .

[5]  Wolfram Burgard,et al.  Improving Data Association in Vision-based SLAM , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[7]  Salah Sukkarieh,et al.  Inertial Aiding of Inverse Depth SLAM using a Monocular Camera , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[9]  David G. Lowe,et al.  Local and global localization for mobile robots using visual landmarks , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[10]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[11]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[12]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[15]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Emanuele Menegatti,et al.  Omnidirectional vision scan matching for robot localization in dynamic environments , 2006, IEEE Transactions on Robotics.

[17]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[19]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[20]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[21]  Azriel Rosenfeld,et al.  Gray-level corner detection , 1982, Pattern Recognit. Lett..

[22]  Óscar Martínez Mozos,et al.  Local descriptors for visual SLAM , 2007 .

[23]  James J. Little,et al.  Design and analysis of a framework for real-time vision-based SLAM using Rao-Blackwellised particle filters , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[24]  Matthew N. Dailey,et al.  Simultaneous Localization and Mapping with Stereo Vision , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[25]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[26]  Don Ray Murray,et al.  Using Real-Time Stereo Vision for Mobile Robot Navigation , 2000, Auton. Robots.

[27]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[28]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[29]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[30]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  Wolfram Burgard,et al.  Using an Image Retrieval System for Vision-Based Mobile Robot Localization , 2002, CIVR.

[32]  Takeshi Ohashi,et al.  Obstacle avoidance and path planning for humanoid robots using stereo vision , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[33]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[34]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[35]  Lina María Paz,et al.  Large-Scale 6-DOF SLAM With Stereo-in-Hand , 2008, IEEE Transactions on Robotics.

[36]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[37]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[38]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[39]  James J. Little,et al.  Vision-based SLAM using the Rao-Blackwellised Particle Filter , 2005 .

[40]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[41]  Minoru Asada,et al.  Trajectory generation for obstacle avoidance of uncalibrated stereo visual servoing without 3D reconstruction , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[42]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[44]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[45]  Avinash C. Kak,et al.  Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing , 1998, IEEE Trans. Robotics Autom..

[46]  Bingrong Hong,et al.  Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision , 2007 .

[47]  Jana Kosecka,et al.  Vision based topological Markov localization , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[48]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[50]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[51]  Andreas Zell,et al.  Localization of mobile robots with omnidirectional vision using Particle Filter and iterative SIFT , 2006, Robotics Auton. Syst..

[52]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[53]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..