Maximum likelihood estimation for semiparametric transformation models with interval-censored data

Abstract Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasses proportional hazards and proportional odds models. We consider nonparametric maximum likelihood estimation for this class of models with an arbitrary number of monitoring times for each subject. We devise an EM-type algorithm that converges stably, even in the presence of time-dependent covariates, and show that the estimators for the regression parameters are consistent, asymptotically normal, and asymptotically efficient with an easily estimated covariance matrix. Finally, we demonstrate the performance of our procedures through simulation studies and application to an HIV/AIDS study conducted in Thailand.

[1]  Jon A. Wellner,et al.  TWO LIKELIHOOD-BASED SEMIPARAMETRIC ESTIMATION METHODS FOR PANEL COUNT DATA WITH COVARIATES , 2005, math/0509132.

[2]  Zhiliang Ying,et al.  Semiparametric analysis of transformation models with censored data , 2002 .

[3]  Guoxin Zuo,et al.  A Baseline-free Procedure for Transformation Models Under Interval Censorship , 2005, Lifetime data analysis.

[4]  Donglin Zeng,et al.  Checking semiparametric transformation models with censored data. , 2012, Biostatistics.

[5]  Anton Schick,et al.  Consistency of the GMLE with Mixed Case Interval‐Censored Data , 2000 .

[6]  Zhigang Zhang,et al.  Regression analysis of interval‐censored failure time data with linear transformation models , 2005 .

[7]  Ying Zhang,et al.  A semiparametric pseudolikelihood estimation method for panel count data , 2002 .

[8]  Michael G Hudgens,et al.  A flexible, computationally efficient method for fitting the proportional hazards model to interval‐censored data , 2016, Biometrics.

[9]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[10]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[11]  S. Geer Applications of empirical process theory , 2000 .

[12]  R A Betensky,et al.  Using Conditional Logistic Regression to Fit Proportional Odds Models to Interval Censored Data , 2000, Biometrics.

[13]  Jianguo Sun,et al.  Semiparametric linear transformation models for current status data , 2005 .

[14]  Donglin Zeng,et al.  Efficient estimation of semiparametric transformation models for counting processes , 2006 .

[15]  Eberhard Zeidler,et al.  Applied Functional Analysis: Applications to Mathematical Physics , 1995 .

[16]  Jian Huang,et al.  Efficient estimation for the proportional hazards model with interval censoring , 1996 .

[17]  Xiaotong Shen,et al.  Proportional odds regression and sieve maximum likelihood estimation , 1998 .

[18]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[19]  .. W. V. Der,et al.  On Profile Likelihood , 2000 .

[20]  Jian Huang,et al.  Sieve Estimation for the Proportional-Odds Failure-Time Regression Model with Interval Censoring , 1997 .

[21]  A. W. van der Vaart,et al.  On Profile Likelihood , 2000 .

[22]  Zhigang Zhang,et al.  Empirical likelihood for linear transformation models with interval-censored failure time data , 2013, J. Multivar. Anal..

[23]  Jian Huang,et al.  Interval Censored Survival Data: A Review of Recent Progress , 1997 .

[24]  A. J. Rossini,et al.  A Semiparametric Proportional Odds Regression Model for the Analysis of Current Status Data , 1996 .

[25]  Lee-Jen Wei,et al.  Regression analysis of panel count data with covariate‐dependent observation and censoring times , 2000 .

[26]  Jian Huang,et al.  Maximum likelihood estimation for proportional odds regression model with current status data , 1995 .