THE MERIT FACTOR OF BINARY SEQUENCES

Binary sequences with small aperiodic correlations play an im­ portant role in many applications ranging from radar to modulation and testing of systems. Golay (1977) introduced the merit factor as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture is still open. In this paper we investigate several classes of se­ quences coming from cyclic difference sets and determine their asymptotic merit factor.

[1]  Tom Høholdt,et al.  Aperiodic correlations and the merit factor of a class of binary sequences , 1985, IEEE Trans. Inf. Theory.

[2]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis: Erster Band: Reihen · Integralrechnung Funktionentheorie , 1925 .

[3]  S. Golomb Construction of Signals with Favorable Correlation Properties , 1999 .

[4]  Tom Høholdt,et al.  The merit factor of binary sequences related to difference sets , 1991, IEEE Trans. Inf. Theory.

[5]  D. Newman,et al.  The L 4 norm of a polynomial with coefficients , 1990 .

[6]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[7]  S. Mertens Exhaustive search for low-autocorrelation binary sequences , 1996 .

[8]  H. D. Luke,et al.  Sequences and arrays with perfect periodic correlation , 1988 .

[9]  Marcel J. E. Golay The merit factor of Legendre sequences , 1983, IEEE Trans. Inf. Theory.

[10]  K. Hoffmann,et al.  Low autocorrelation binary sequences: exact enumeration and optimization by evolutionary strategies , 1992 .

[11]  Dieter Jungnickel,et al.  Perfect and Almost Perfect Sequences , 1999, Discret. Appl. Math..

[12]  Dieter Jungnickel,et al.  Difference Sets: An Introduction , 1999 .

[13]  MARCEL J. E. GOLAY,et al.  Sieves for low autocorrelation binary sequences , 1977, IEEE Trans. Inf. Theory.

[14]  J. Bernasconi Low autocorrelation binary sequences : statistical mechanics and configuration space analysis , 1987 .

[15]  Oscar Moreno Survey of Results on Signal Patterns for Locating One or Multiple Targets , 1999 .

[16]  Walter Rudin,et al.  Some theorems on Fourier coefficients , 1959 .

[17]  Tom Høholdt,et al.  Determination of the merit factor of Legendre sequences , 1988, IEEE Trans. Inf. Theory.

[18]  L. D. Baumert Cyclic Difference Sets , 1971 .

[19]  J. Lindner,et al.  Binary sequences up to length 40 with best possible autocorrelation function , 1975 .