Relativistic corrections to the partial wave expansion of two-electron atoms†

The asymptotic behavior of the partial wave expansion (or the CI expansion in terms of AOs with angular quantum number l) of the leading relativistic correction for two-electron atomic ions in a 1S state is studied analytically. In agreement with earlier numerical findings, the partial wave increments of the leading relativistic correction go as (l + 1/2)−2, whereas the nonrelativistic increments go as (l + 1/2)−4. The coefficient of the leading term is 2 α2 π2 ∫ | ψ(r,r,0)|2r3dr for the Dirac Coulomb operator, and surprisingly also the full Dirac-Breit operator, while the Gaunt term gives a contribution of −4α2π2∫|ψ(r,r,0)|2r3dr. The results obtained here rely entirely on the nonrelativistic correlation cusp, and do not require assumptions on a no-pair projection or a short-range regularization of the electron interaction. They do not give any information on what happens beyond the leading order of relativistic corrections. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008

[1]  K. Jankowski,et al.  Ab initio asymptotic-expansion coefficients for pair energies in MP2 perturbation theory for atoms , 2006 .

[2]  H. Müther,et al.  Correlations and the Dirac structure of the nucleon self-energy , 2000, nucl-th/0006072.

[3]  J. Olsen,et al.  Basis-set convergence of the two-electron Darwin term , 2000 .

[4]  Wenjian Liu,et al.  Relativistic MCSCF by means of quasidegenerate direct perturbation theory. I. Theory , 2000 .

[5]  J. Noga,et al.  A CCSD(T)-R12 study of the ten-electron systems Ne, F-, HF, H2O, NH3, NH4+ and CH4 , 1997 .

[6]  W. Kutzelnigg,et al.  Direct perturbation theory of relativistic effects for explicitly correlated wave functions: The He isoelectronic series , 1997 .

[7]  Wojciech Cencek,et al.  Accurate relativistic energies of one‐ and two‐electron systems using Gaussian wave functions , 1996 .

[8]  W. Kutzelnigg,et al.  Hund's rules , 1996 .

[9]  Werner Kutzelnigg,et al.  Hund's rules, the alternating rule, and symmetry holes , 1993 .

[10]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[11]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[12]  W. Kutzelnigg,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. III. Second‐order Mo/ller–Plesset (MP2‐R12) calculations on molecules of first row atoms , 1991 .

[13]  S. Salomonson,et al.  Relativistic all-order pair functions from a discretized single-particle Dirac Hamiltonian. , 1989, Physical review. A, General physics.

[14]  K. Jankowski,et al.  Correlation and relativistic effects for many-electron systems. II. Second-order energies for closed-shell atoms , 1989 .

[15]  K. Jankowski,et al.  An alternative to the quasirelativistic approach , 1988 .

[16]  W. Kutzelnigg Origin and meaning of the Fermi contact interaction , 1988 .

[17]  K. Jankowski,et al.  Correlation and relativistic effects for many-electron systems , 1987 .

[18]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[19]  A. Rutkowski Relativistic perturbation theory. I. A new perturbation approach to the Dirac equation , 1986 .

[20]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[21]  R. Metzger,et al.  Piecewise polynomial configuration interaction natural orbital study of 1 s2 helium , 1979 .

[22]  C. Schwartz,et al.  Importance of Angular Correlations between Atomic Electrons , 1962 .

[23]  J. Bahcall,et al.  RELATIVISTIC Z-DEPENDENT THEORY OF MANY-ELECTRON ATOMS , 1962 .

[24]  D. Layzer On a screening theory of atomic spectra , 1959 .

[25]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[26]  W. Kutzelnigg Perturbation Theory of Relativistic Effects , 2002 .

[27]  T. Itoh Derivation of Nonrelativistic Hamiltonian for Electrons from Quantum Electrodynamics , 1965 .