GRB 090426: the environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609

We present the discovery of an absorption-line redshift of z = 2.609 for GRB 090426, establishing the first firm lower limit to a redshift for a gamma-ray burst (GRB) with an observed duration of 90 per cent confidence) a member of the short/hard phenomenological class of GRBs. From analysis of the optical-afterglow spectrum we find that the burst originated along a very low H i column density sightline, with NH i < 3.2 × 1019 cm-2. Our GRB 090426 afterglow spectrum also appears to have weaker low-ionization absorption (Si ii, C ii) than ∼95 per cent of previous afterglow spectra. Finally, we also report the discovery of a blue, very luminous, star-forming putative host galaxy (∼2L *) at a small angular offset from the location of the optical afterglow. We consider the implications of this unique GRB in the context of burst duration classification and our understanding of GRB progenitor scenarios. © 2009 RAS.

[1]  Bing Zhang,et al.  DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF z = 6.7 GRB 080913, z = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs , 2009, 0902.2419.

[2]  P. T. O'Brien,et al.  IN SEARCH OF PROGENITORS FOR SUPERNOVALESS GAMMA-RAY BURSTS 060505 AND 060614: RE-EXAMINATION OF THEIR AFTERGLOWS , 2008, 0812.0979.

[3]  J. X. Prochaska,et al.  HIGH-REDSHIFT STARBURSTING DWARF GALAXIES REVEALED BY γ-RAY BURST AFTERGLOWS , 2008, 0809.2608.

[4]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[5]  Y. Urata,et al.  GRB 090426: TNT confimation of optical counterpart. , 2009 .

[6]  P. Hall,et al.  GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION , 2008, 0811.1044.

[7]  Yiqi Lu,et al.  The origin of the gamma‐ray burst of GRB 060614 , 2008 .

[8]  A. J. Levan,et al.  GRB 080913 AT REDSHIFT 6.7 , 2008, 0810.2314.

[9]  S. B. Pandey,et al.  Flares from a candidate Galactic magnetar suggest a missing link to dim isolated neutron stars , 2008, Nature.

[10]  Jason X. Prochaska,et al.  A Survey for N V Absorption at z ≈ zGRB in GRB Afterglow Spectra: Clues to Gas Near the Progenitor Star , 2008, 0806.0399.

[11]  S. B. Cenko,et al.  GRB 071003: Broadband Follow-up Observations of a Very Bright Gamma-Ray Burst in a Galactic Halo , 2008, 0805.2394.

[12]  E. Berger THE HOST GALAXIES OF SHORT-DURATION GAMMA-RAY BURSTS: LUMINOSITIES, METALLICITIES, AND STAR FORMATION RATES , 2008, 0805.0306.

[13]  J. Bloom,et al.  Gamma-ray Bursts, Classified Physically , 2008, 0804.0965.

[14]  UK.,et al.  Short gamma‐ray bursts from SGR giant flares and neutron star mergers: two populations are better than one , 2008, 0802.0008.

[15]  Zhibin Zhang,et al.  An analysis of the durations of Swift gamma-ray bursts , 2007, 0708.4049.

[16]  E. O. Ofek,et al.  GRB 070610: A Curious Galactic Transient , 2007, 0708.0226.

[17]  D. A. Kann,et al.  Spatially Resolved Properties of the GRB 060505 Host: Implications for the Nature of the Progenitor , 2007, astro-ph/0703407.

[18]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[19]  P. B. Cameron,et al.  GRB 070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment , 2007, 0712.2828.

[20]  Joshua R. Smith,et al.  Implications for the origin of GRB 070201 from LIGO observations , 2007 .

[21]  S. Ravi Bayesian Logical Data Analysis for the Physical Sciences: a Comparative Approach with Mathematica® Support , 2007 .

[22]  L. Kewley,et al.  The Host Galaxy of GRB 060505: Host ISM Properties , 2007, 0708.0833.

[23]  J. Prochaska,et al.  A New Constraint on the Escape Fraction in Distant Galaxies Using γ-Ray Burst Afterglow Spectroscopy , 2007, 0707.2594.

[24]  Mark Dickinson,et al.  Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.

[25]  Nathaniel R. Butler,et al.  A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations , 2007, 0706.1275.

[26]  E. Berger,et al.  The Prompt Gamma-Ray and Afterglow Energies of Short-Duration Gamma-Ray Bursts , 2007, astro-ph/0702694.

[27]  E. Nakar Short-hard gamma-ray bursts , 2007, astro-ph/0701748.

[28]  Bing Zhang Gamma-Ray Bursts in the Swift Era , 2007, astro-ph/0701520.

[29]  N. Gehrels,et al.  Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614 , 2006, astro-ph/0612238.

[30]  P. B. Cameron,et al.  A New Population of High-Redshift Short-Duration Gamma-Ray Bursts , 2006, astro-ph/0611128.

[31]  J. X. Prochaska,et al.  A Putative Early-Type Host Galaxy for GRB 060502B: Implications for the Progenitors of Short-Duration Hard-Spectrum Bursts , 2006, astro-ph/0607223.

[32]  New Journal of Physics The , 2007 .

[33]  T. Sakamoto,et al.  A new γ-ray burst classification scheme from GRB 060614 , 2006, Nature.

[34]  J. Bloom,et al.  The Durations and Spectral Hardness Ratios of Swift BAT Gamma-Ray Bursts in the Co-Moving Frame , 2006 .

[35]  L. Kewley,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[36]  Jason X. Prochaska,et al.  On the Perils of Curve-of-Growth Analysis: Systematic Abundance Underestimates for the Gas in Gamma-Ray Burst Host Galaxies , 2006, astro-ph/0606500.

[37]  William H. Lee,et al.  The progenitors of short gamma-ray bursts , 2006, astro-ph/0701874.

[38]  D. Lamb,et al.  GRB 060121: Implications of a Short-/Intermediate-Duration γ-Ray Burst at High Redshift , 2006, astro-ph/0605516.

[39]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[40]  E. Ramirez-Ruiz,et al.  Gamma-Ray Bursts in the Swift Era , 2009, 0909.1531.

[41]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[42]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[43]  J. Fynbo,et al.  The Faint Afterglow and Host Galaxy of the Short-Hard GRB 060121 , 2006, astro-ph/0603282.

[44]  David L. Band,et al.  Postlaunch Analysis of Swift’s Gamma-Ray Burst Detection Sensitivity , 2006, astro-ph/0602267.

[45]  Yuki Kaneko,et al.  The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts , 2006, astro-ph/0601188.

[46]  T. Sakamoto,et al.  GRB 050911: A Black Hole-Neutron Star Merger or a Naked GRB , 2005, astro-ph/0512358.

[47]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[48]  E. Ramirez-Ruiz,et al.  The Galaxy Hosts and Large-Scale Environments of Short-Hard Gamma-Ray Bursts , 2005, astro-ph/0510022.

[49]  P. B. Cameron,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[50]  E. Berger,et al.  A Morphological Study of Gamma-Ray Burst Host Galaxies , 2005, astro-ph/0508061.

[51]  K. Pedersen,et al.  GRB 050509B: Constraints on Short Gamma-Ray Burst Models , 2005, astro-ph/0506123.

[52]  J. M. Castro Cerón,et al.  On the Afterglow and Host Galaxy of GRB 021004: A Comprehensive Study with the Hubble Space Telescope , 2005, astro-ph/0506101.

[53]  E. Ramirez-Ruiz,et al.  Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b , 2005, astro-ph/0505480.

[54]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[55]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[56]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: Multivariate Gaussian from maximum entropy , 2005 .

[57]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[58]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[59]  Bing Zhang,et al.  Gamma-Ray Bursts: Progress, Problems & Prospects , 2003, astro-ph/0311321.

[60]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[61]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[62]  E. Terlevich,et al.  Lyα Emission in Starbursts: Implications for Galaxies at High Redshift , 2003, astro-ph/0309396.

[63]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[64]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[65]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[66]  S. Djorgovski,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[67]  R. Narayan,et al.  Observational Prospects for Afterglows of Short-Duration Gamma-Ray Bursts , 2001, astro-ph/0108132.

[68]  R. Sari,et al.  The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows , 2001, astro-ph/0108027.

[69]  V. Kashyap,et al.  Analysis of Energy Spectra with Low Photon Counts via Bayesian Posterior Simulation , 2000, astro-ph/0008170.

[70]  R. Preece,et al.  The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data , 1999, astro-ph/9908119.

[71]  Zhi-Yun Li,et al.  Gamma-Ray Burst Environments and Progenitors , 1999, astro-ph/9904417.

[72]  Chris L. Fryer,et al.  To be submitted to The Astrophysical Journal Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts , 1999 .

[73]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[74]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[75]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[76]  J. Bloom,et al.  The Spatial Distribution of Coalescing Neutron Star Binaries , 1998, astro-ph/9805222.

[77]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[78]  Remington P. S. Stone,et al.  Spectrophotometry of Flux Calibration Stars for Hubble Space Telescope , 1996 .

[79]  E. Fenimore,et al.  Gamma-Ray Burst Peak Duration as a Function of Energy , 1995, astro-ph/9504075.

[80]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[81]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[82]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[83]  D. Valls-Gabaud The Lyman alpha emission of starburst galaxies , 1993, astro-ph/9306008.

[84]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[85]  L. Cowie,et al.  High-Resolution Optical and Ultraviolet Absorption-Line Studies of Interstellar Gas , 1986 .

[86]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[87]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[88]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[89]  M. Brocklehurst,et al.  Calculations of Level Populations for the Low Levels of Hydrogenic Ions in Gaseous Nebulae , 1971 .

[90]  Space Science Reviews , 1962, Nature.

[91]  Chinese Journal of Astronomy and Astrophysics , 2022 .